Rút gọn biểu thức : `A` = ( $\frac{3}{x+3}$ - $\frac{9}{x^2+6x+9}$ ) : ( $\frac{3}{x^2-9}$ - $\frac{1}{3-x}$ )
2 câu trả lời
Đáp án:
$\texttt{d.a.r.i}$
`A = (3/[x + 3] - 9/[x^2 + 6x + 9]) : (3/[x^2 - 9] - 1/[3 - x])` `(x \ne +- 3)`
`A = ([3.(x + 3)]/[(x + 3)^2] - 9/[(x + 3)^2]) : (3/[(x - 3).(x + 3)] + 1/[x - 3])`
`A = ([3x + 9]/[(x + 3)^2] - 9/[(x + 3)^2]) : (3/[(x - 3).(x + 3)] + [x + 3]/[(x - 3).(x + 3)] )`
`A = [3x + 9 - 9]/[(x + 3)^2] : [3 + x + 3]/[(x - 3).(x + 3)]`
`A = [3x]/[(x + 3)^2] : [x + 6]/[(x - 3).(x + 3)]`
`A = [3x]/[(x + 3)^2] . [(x - 3).(x + 3)]/[x + 6]`
`A = [3x.(x - 3).(x + 3)]/[(x + 3)^2.(x + 6)]`
`A = [3x.(x - 3)]/[(x + 3).(x + 6)]`
`A=(3/(x+3)-9/(x^2+6x+9)):(3/(x^2-9)-1/(3-x))`
`=(3/(x+3)-9/((x+3)^2) ) : ( 3/((x-3)(x+3)) + 1/(x-3) )`
`=( (3(x+3))/((x+3)^2) - 9/((x+3)^2) ) : (3/((x-3)(x+3)) + (x+3)/((x+3)(x-3)) )`
`=( (3x+9-9)/((x+3)^2) ) : (( 3+x+3)/((x+3)(x-3)) )`
`= (3x)/((x+3)^2) : (x+6)/((x+3)(x-3))`
`= (3x)/((x+3)^2) . ((x+3)(x-3))/(x+6)`
`=(3x(x-3))/((x+3)(x+6))`