π01sin4xdx = a b Tìm a, b Giúp em bài này với ạ

1 câu trả lời

Đáp án:

a=2,b=2.

Giải thích các bước giải:

I=π01sin4xdxu=2x,du=2dxx0πu02πI=122π01sin2udu=122π01sin2xdx=122π0sin2x2sinxcosx+cos2xdx=122π0(sinxcosx)2dx=122π02sin2(xπ4)2dx=222π0|sin(xπ4)|dx=227π4π4|sinx|dx=22(0π4sinxdx+π0sinxdx7π4πsinxdx)=22.4=22a=2,b=2.

Câu hỏi trong lớp Xem thêm