Một hỗn hợp A gồm nhôm và magie có khối lượng = 5,1 g hòa tan hoàn toàn hỗn hợp A phải dùng 200g dd H2SO4, 12,25 phần trăm sau PỨ thu đc dd B và thoát ra V lít khí (đktc) a, tính khối lg kim loại có trong hỗn hợp ban đầu? V=?
2 câu trả lời
Đáp án:
`m_{Al} = 2,7` `gam`
`m_{Mg} = 2,4` `gam`
`V_{H_2} = 5,6` `l`
Giải thích các bước giải:
`m_{H_2SO_4} = (200 . 12,25%)/(100%) = 24,5` `gam`
`-> n_{H_2SO_4} = (24,5)/(98) = 0,25` `mol`
PTHH : `2Al + 3H_2SO_4 -> Al_2(SO_4)_3 + 3H_2` ( Phương trình 1 )
`0,1 -> 0,15 -> 0,05 -> 0,15`
PTHH : `Mg + H_2SO_4 -> MgSO_4 + H_2` ( Phương trình 2 )
`0,1 -> 0,1 -> 0,1 -> 0,1`
Gọi `a` là số mol của `Al`
Gọi `b` là số mol của `Mg`
`-> 27a + 24b = 5,1` `( 1 )`
Ta có : `n_{H_2SO_4} = 0,25` `mol`
`-> 1,5a + b = 0,25` `( 2 )`
Từ `1` và `2` , ta được :
`-> a = 0,1` `mol`
`-> b = 0,1` `mol`
Khối lượng của `Al` là :
`m_{Al} = 27 . 0,1 = 2,7` `gam`
Khối lượng của `Mg` là :
`m_{Mg} = 24 . 0,1 = 2,4` `gam`
Số mol khí thoát ra là :
`\sumn_{H_2} = 0,15 + 0,1 = 0,25` `mol`
Thể tích khí thoát ra là :
`V_{H_2} = 0,25 . 22,4 = 5,6` `l`
Đáp án:
$m_{Al}=2,7(g)$
$m_{Mg}=2,4(g)$
Giải thích các bước giải:
Đặt: $\begin{cases} n_{Al}=x(mol)\\n_{Mg}=y(mol) \end{cases}$
$2Al+3H_2SO_4→Al_2(SO_4)_3+3H_2↑$
$Mg+H_2SO_4→MgSO_4+H_2$
Ta có: $m_{H_2SO_4}=\dfrac{200×12,25\%}{100\%}=24,5(g)$
→ $n_{H_2SO_4}=\dfrac{24,5}{98}=0,25(mol)$
Theo đề bài ta có hệ: $\begin{cases} 27x+24y=5,1\\\dfrac{3}{2}x+y=0,25 \end{cases}$
→ $x=y=0,1(mol)$
⇒ $m_{Al}=0,1×27=2,7(g)$
⇒ $m_{Mg}=5,1-2,7=2,4(g)$
Ta lại có: $∑n_{H_2}=\dfrac{3}{2}x+y=\dfrac{3}{2}×0,1+0,1=0,25(mol)$
⇒ $V_{H_2}=0,25×22,4=5,6(l)$
$#thanhthien$