2 câu trả lời
Đáp án:
$243 x^5 - 1620 x^4 + 4320 x^3 - 5760 x^2 + 3840 x - 1024.$
Giải thích các bước giải:
$(3x-4)^5\\ =\displaystyle\sum_{k=0}^5 C_5^k .4^k.(3x)^{5-k}\\ =\displaystyle\sum_{k=0}^5 C_5^k .4^k.3^{5-k}.x^{5-k}\\ =C_5^0 .4^0.3^5.x^5+C_5^1 .4^1.3^4.x^4+C_5^2 .4^2.3^3.x^3+C_5^3 .4^3.3^2.x^2+C_5^4 .4^4.3^1.x^1+C_5^5 .4^5.3^0.x^0\\ =243 x^5 - 1620 x^4 + 4320 x^3 - 5760 x^2 + 3840 x - 1024.$
$\text{$(3x - 4)^{5}$ }$
$\text{= 5C0.$3x^{5}$ - 5C1.$3x^{4}$.4 + 5C2.$3x^{3}$.4² }$
$\text{ - 5C3.$3x^{2}$.$4^{3}$ + 5C4.3x.$4^{4}$ - 5C5.$4^{5}$ }$
$\text{= 243$x^{5}$ - 1620$x^{4}$ + 4320$x^{3}$ - 5760$x^{2}$ }$
$\text{ + 3840x - 1020}$
Câu hỏi trong lớp
Xem thêm