Hàm số y= √x-x đồng biến trên khoảng nào?

2 câu trả lời

Hàm số \(y=\sqrt{x}-x\)

ĐKXĐ: \(x\ge 0\)

Ta có: \(y'=\dfrac{1}{2\sqrt{x}}-1\)

Để hàm số đồng biến khi đó \(y'\ge 0\)

\(\Leftrightarrow \dfrac{1}{2\sqrt{x}}-1\ge 0\)

\(\dfrac{1}{2\sqrt{x}}\ge 1\)

\(\Leftrightarrow 2\sqrt{x}\le 1\)

\(\Leftrightarrow x\le \dfrac{1}{4}\)

Kết hợp với ĐKXĐ vậy hàm số đồng biến \([0; \dfrac{1}{4}]\)

\(\begin{array}{l} y = \sqrt x - x\\ D = \left[ {0; + \infty } \right)\\ \Rightarrow y' = \frac{1}{{2\sqrt x }} - 1\\ \Rightarrow y' = 0\\ \Leftrightarrow \frac{1}{{2\sqrt x }} - 1 = 0\\ \Leftrightarrow 2\sqrt x = 1\\ \Leftrightarrow \sqrt x = \frac{1}{2}\\ \Leftrightarrow x = \frac{1}{4}\\ Bang\,\,\,xet\,\,dau:\\ x\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \infty \\ f'\left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \,\,\,\,\\ \Rightarrow Hs\,\,\,DB\,\,tren\,\,\,\left( {0;\,\frac{1}{4}} \right)\,\,\,va\,\,ham\,\,NB\,\,\,tren\,\,\,\left( {\frac{1}{4}; + \infty } \right). \end{array}\)

Câu hỏi trong lớp Xem thêm
1 lượt xem
1 đáp án
3 giờ trước