2 câu trả lời
Đáp án:
Giải thích các bước giải:
`7cos\ 2x+2cos\ x-5=0`
`⇔ 7(2cos^2 x-1)+2cos\ x-5=0`
`⇔ 14cos^2 x+2cos\ x-12=0`
`⇔ (7cos\ x-6)(cos\ x+1)=0`
`⇔` \(\left[ \begin{array}{l}7\cos x-6=0\\ \cos x+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}\cos x=\dfrac{6}{7}\\ \cos x=-1\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\pm arccos\ (\dfrac{6}{7})+k2\pi\ (k \in \mathbb{Z})\\x=\pi+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
$\text{7cos2x + 2 cosx - 5 = 0 }$
$\text{⇔ 7(2cos²x - 1) + 2cosx - 5 = 0 }$
$\text{⇔ 14cos²x + 2cosx - 12 = 0 }$
$\text{Đặt cosx = t ( -1≤t≤1)}$
$\text{PTTT: 14t² + 2t - 12 = 0}$
$\text{⇔ \(\left[ \begin{array}{l}t = $\frac{6}{7}$ (t/m) \\t=-1 (t/m)\end{array} \right.\) }$
$\text{+với t = -1 ⇔ cosx = -1 ⇔ x = π + k2π (k∈Z)}$
$\text{+với t =$\frac{6}{7}$ ⇔ x = ± arccos($\frac{6}{7}$) +k2π }$