Giải phương trình: ` |3x - 2| = x^2 + 2x + 3`
2 câu trả lời
`|3x-2|=x^2+2x+3`
`@TH1:` `3x-2 >= 0⇔x >= 2/3`
`⇒|3x-2|=3x-2`
Ta có: `3x-2=x^2+2x+3`
`⇔x^2+2x-3x+3+2=0`
`⇔x^2-x+5=0`
`⇔x^2-2x.1/2+1/4+19/4=0`
`⇔(x-1/2)^2=-19/4` (Vô lí)sqr
`@TH2:` `3x-2 < 0⇔x < 2/3`
`⇒|3x-2|=2-3x`
Ta có: `2-3x=x^2+2x+3`
`⇔x^2+2x+3x+3-2=0`
`⇔x^2+5x+1=0`
`⇔x^2+2.x.5/2+25/4-21/4=0`
`⇔(x+5/2)^2=21/4`
⇔\(\left[ \begin{array}{l}x+5/2=\frac{\sqrt{21}}{2}\\x+5/2=\frac{-\sqrt{21}}{2}\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\frac{-5+\sqrt{21}}{2}\\x+5/2=\frac{-5-\sqrt{21}}{2}\end{array} \right.\)
Mà `x < 2/3`
⇒`x=(-5+-\sqrt{21})/2`
Vậy ptr đã cho có nghiệm `x=(-5+-\sqrt{21})/2`
`|3x-2|=x^2+2x+3`
`@` Trường hợp `1:`
Với `x>=2/3`
`3x-2=x^2+2x+3`
`<=>3x-2-x^2-2x-3=0`
`<=>x^2-(3x-2x)+(-2-3)=0`
`<=>x^2-x+5=0`
`<=>x^2-2x . 1/2+1/5+19/4=0`
`<=>(x-1/2)^2+19/4`
Do `(x-1/2)^2>=0 AA x`
`->(x-1/2)^2+19/4>=19/4>0 AA x`
Nên `(x-1/2)^2\ne19/4`
`->` Vô nghiệm
`@` Trường hợp `2:`
Với `x<2/3`
`3x-2=(-x^2+2x+3)`
`<=>3x-2=-x^2-2x-3`
`<=>3x-2+x^2+2x+3=0`
`<=>x^2+(3x+2x)+(-2+3)=0`
`<=>x^2+5x+1=0`
`<=>x^2+2x . 5/2+25/4-21/4=0`
`<=>(x+5/2)^2-21/4=0`
`<=>(x+5/2)^2=21/4`
`<=>(x+5/2)^2=((\sqrt{21})/2)^2`
`<=>x+5/2=+-(\sqrt{21})/2`
`<=>x+5/2=(\sqrt{21})/2` hoặc `x+5/2=-(\sqrt{21})/2`
`<=>x=(-5+\sqrt{21})/2` hoặc `x=(-5-\sqrt{21})/2`
Mà `x<2/3`
Vậy, `S={(-5+\sqrt{21})/2; (-5-\sqrt{21})/2}.`