CMR: 1/2²+1/3²+1/4²+...+1/2018²

2 câu trả lời

Đáp án:

Ta có:

Đặt =1/2^2+1/3^2+1/4^2+...+1/2018^2<1/1.2+1/2.3+1/3.4+...+1/2017.2018 

Từ 1 ta có:

1/n(n+1)=n+1-n/n(n+1) = n+1/n(n+1) - n/n(n+1) = 1/n - 1/n+1. (2)

Từ (2) ta có:

1/1.2+1/2.3+1/3.4+...+1/2017.2018

=1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018=1- 1/2018=2018/2018 - 1/2018=2017/2018<1.

                              

 

Đáp án+Giải thích các bước giải:

Ta có :

`1/2^2 < 1/{1.2}`

`1/3^2 < 1/{2.3}`

`1/4^2 < 1/{3.4}`

...

`1/2018^2 < 1/{2017 . 2018}`

`⇒` `1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2018^2 < 1/{1.2} + 1/{2.3} + 1/{3.4} + ... + 1/{2017 . 2018}`

`⇒` `1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2018^2 < 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2017 - 1/2018`

`⇒` `1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2018^2 < 1 - 1/2018`

`⇒` `1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2018^2 < 2017/2018`

Mà `2017/2018 < 1`

`⇒` `1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2018^2 < 1` `(đpcm)`