Chứng minh hàm số X / X^2 +1 đồng biến trên khoảng (-1;1) nghịch biến trên khoảng (âm vô cùng ; -1) và (1; dương vô cùng)
2 câu trả lời
Đáp án:
Lời giải: \(\eqalign{ & y = {x \over {{x^2} + 1}}\,\,\left( {D = R} \right) \cr & y' = {{{x^2} + 1 - x.2x} \over {{{\left( {{x^2} + 1} \right)}^2}}} \cr & y' = {{ - {x^2} + 1} \over {{{\left( {{x^2} + 1} \right)}^2}}} \cr & y' > 0 \Leftrightarrow - {x^2} + 1 > 0 \Leftrightarrow - 1 < x < 1 \cr & y' < 0 \Leftrightarrow - {x^2} + 1 < 0 \Leftrightarrow \left[ \matrix{ x > 1 \hfill \cr x < - 1 \hfill \cr} \right. \cr & \Rightarrow Ham\,\,so\,\,DB\,\,tren\,\,\left( { - 1;1} \right) \cr & NB\,\,tren\,\,\left( { - \infty ; - 1} \right)\,\,va\,\,\left( {1; + \infty } \right) \cr} \)
Câu hỏi trong lớp
Xem thêm