cho hs y=(m-1)x^3/3 + (m-1)x^2+4x-1. Hs đã cho đạt cực tiểu tại x1,CĐ tại x2 đồng thời x1
1 câu trả lời
$$\eqalign{ & y = {{\left( {m - 1} \right){x^3}} \over 3} + \left( {m - 1} \right){x^2} + 4x - 1 \cr & y' = \left( {m - 1} \right){x^2} + 2\left( {m - 1} \right)x + 4 = 0 \cr & Ham\,\,so\,\,co\,\,2\,\,cuc\,\,tri\,\,thoa\,\,man\,\,{x_{CT}} < {x_{CD}} \cr & \Leftrightarrow \left\{ \matrix{ a = m - 1 < 0 \hfill \cr \Delta ' = {\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) > 0 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{ m < 1 \hfill \cr \left[ \matrix{ m - 1 > 4 \hfill \cr m - 1 < 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m < 1 \hfill \cr \left[ \matrix{ m > 5 \hfill \cr m < 1 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ m > 5 \hfill \cr m < 1 \hfill \cr} \right. \cr} $$