2 câu trả lời
Đáp án:
Giải thích các bước giải:
\(A = n\left( {n + 1} \right) + 6\)
+) Với \(n=2k\) thì \(A=2k(2k+1)+6=4k^2+2k+6 \vdots 2\)
+) Với \(n=2k+1\) thì \(A=(2k+1) (2k+2)+6=4k^2+6k+8 \vdots 2\) (đpcm)
Ta thấy n và n+1 là hai số tự nhiên liên tiếp, do đó một trong hai số đó phải là số chẵn.
Ko mất tquat, giả sử n là số chẵn, tức là n = 2k với k là một số tự nhiên nào đó. Khi đó
$A = 2k (n+1) + 6 = 2[k(n+1) + 3]$
Vậy A là một bội của 2, do đó A chia hết cho 2.
Câu hỏi trong lớp
Xem thêm