4^15 . 9^15 < 2^n . 3^n < 18^16 . 2^16 tìm n

2 câu trả lời

`4^{15}. 9^{15} < 2^n. 3^n < 18^{16}. 2^{16} `

`=> ( 4. 9 )^{15} < ( 2. 3 )^n < ( 18. 2 )^{16}`

`=> 36^{15} < 6^n < 36^{16}`

`=> 6^{30} < 6^n < 6^{32}`

`=> 30 < n < 32`

`=> n = 31`

 $Vậy$ `n = 31`

 

`4^15 . 9^15 < 2^n . 3^n < 18^16 . 2^16`

`=> (2^2)^15 . (3^2)^15 < 2^n . 3^n < (2.3^2)^16 . 2^16`

`=> 2^30 . 3^30 < 2^n . 3^n < 2^16 . (3^2)^16 . 2^16`

`=> 2^30 . 3^30 < 2^n . 3^n < 2^32 . 3^32`

`=> (2.3)^30 < (2.3)^n < (2.3)^32`

`=> 6^30 < 6^n < 6^32`

`=> n = 31`

Vậy `n = 31`

`#dtkc`

Câu hỏi trong lớp Xem thêm
4 lượt xem
2 đáp án
1 giờ trước