2 câu trả lời
Đáp án:
2x3+3x2+3x+1=0
⇔x3+3x2+3x+1+x3=0
⇔(x3+3x2+3x+1)+x3=0
⇔(x+1)3+x3=0
⇔[(x+1)+x].[(x+1)2-x.(x+1)+x2]=0
⇔(2x+1).(x2+2x+1-x2-x+x2)=0
⇔(2x+1).(x2+x+1)=0
Do: x2+x+1=x2+2.x.12+14+34=(x+12)2+34>0
→x2+x+1≠0
→2x+1=0
⇔2x=-1
⇔x=-12
Vậy S={-12}
#dariana
2x3+3x2+3x+1=0
⇔2x3+2x2+x2+2x+x+1=0
⇔(2x3+2x2+2x)+(x2+x+1)=0
⇔2x(x2+x+1)+(x2+x+1)=0
⇔(2x+1)(x2+x+1)=0
⇔ [2x+1=0x2+x+1=0
⇔ [2x=−1x2+2.x.12+14+34=0
⇔ [2x=−1(x+12)2+34=0
⇔ [x=−12(x+12)2+34=0
⇔ [x=−12(x+12)2=−34
⇔ [x=−12x∈∅ vì (x+12)2≥0
⇔x=−12
Vậy phương trình có tập nghiệm S={-12}
#thanhmaii2008