1) lim(4x^3-3x^2+7)

X tiến đến + vô cực

2) lim(x^4-2x^2+11)

X tiến đến + vô cực

3) lim 5x-2

x->+vô cực x+7

4)lim(căn x^2+3x-2 - căn x^2+5)

x->+vô cực

5) lim 5x-1

x->3^- 3-x

1 câu trả lời

Đáp án:

$\begin{array}{l}
1)\mathop {\lim }\limits_{x \to  + \infty } \left( {4{x^3} - 3{x^2} + 7} \right)\\
 = \mathop {\lim }\limits_{x \to  + \infty } {x^3}\left( {4 - \dfrac{3}{x} + \dfrac{7}{{{x^3}}}} \right)\\
 =  + \infty \\
2)\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^4} - 2{x^2} + 11} \right)\\
 = \mathop {\lim }\limits_{x \to  + \infty } {x^4}\left( {1 - \dfrac{2}{{{x^2}}} + \dfrac{{11}}{{{x^4}}}} \right)\\
 =  + \infty \\
3)\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x - 2}}{{x + 7}}\\
 = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5 - \dfrac{2}{x}}}{{1 + \dfrac{7}{x}}}\\
 = \dfrac{5}{1}\\
 = 5\\
4)\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x - 2}  - \sqrt {{x^2} + 5} } \right)\\
 = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{{x^2} + 3x - 2 - \left( {{x^2} + 5} \right)}}{{\sqrt {{x^2} + 3x - 2}  + \sqrt {{x^2} + 5} }}\\
 = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3x - 7}}{{\sqrt {{x^2} + 3x - 2}  + \sqrt {{x^2} + 5} }}\\
 = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3 - \dfrac{7}{x}}}{{\sqrt {1 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}}  + \sqrt {1 + \dfrac{5}{{{x^2}}}} }}\\
 = \dfrac{3}{{\sqrt 1  + \sqrt 1 }}\\
 = \dfrac{3}{2}\\
5)\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{5x - 1}}{{3 - x}}\\
 =  + \infty 
\end{array}$

Câu hỏi trong lớp Xem thêm