1) lim(4x^3-3x^2+7)
X tiến đến + vô cực
2) lim(x^4-2x^2+11)
X tiến đến + vô cực
3) lim 5x-2
x->+vô cực x+7
4)lim(căn x^2+3x-2 - căn x^2+5)
x->+vô cực
5) lim 5x-1
x->3^- 3-x
1 câu trả lời
Đáp án:
$\begin{array}{l}
1)\mathop {\lim }\limits_{x \to + \infty } \left( {4{x^3} - 3{x^2} + 7} \right)\\
= \mathop {\lim }\limits_{x \to + \infty } {x^3}\left( {4 - \dfrac{3}{x} + \dfrac{7}{{{x^3}}}} \right)\\
= + \infty \\
2)\mathop {\lim }\limits_{x \to + \infty } \left( {{x^4} - 2{x^2} + 11} \right)\\
= \mathop {\lim }\limits_{x \to + \infty } {x^4}\left( {1 - \dfrac{2}{{{x^2}}} + \dfrac{{11}}{{{x^4}}}} \right)\\
= + \infty \\
3)\mathop {\lim }\limits_{x \to + \infty } \dfrac{{5x - 2}}{{x + 7}}\\
= \mathop {\lim }\limits_{x \to + \infty } \dfrac{{5 - \dfrac{2}{x}}}{{1 + \dfrac{7}{x}}}\\
= \dfrac{5}{1}\\
= 5\\
4)\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x - 2} - \sqrt {{x^2} + 5} } \right)\\
= \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^2} + 3x - 2 - \left( {{x^2} + 5} \right)}}{{\sqrt {{x^2} + 3x - 2} + \sqrt {{x^2} + 5} }}\\
= \mathop {\lim }\limits_{x \to + \infty } \dfrac{{3x - 7}}{{\sqrt {{x^2} + 3x - 2} + \sqrt {{x^2} + 5} }}\\
= \mathop {\lim }\limits_{x \to + \infty } \dfrac{{3 - \dfrac{7}{x}}}{{\sqrt {1 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}} + \sqrt {1 + \dfrac{5}{{{x^2}}}} }}\\
= \dfrac{3}{{\sqrt 1 + \sqrt 1 }}\\
= \dfrac{3}{2}\\
5)\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{5x - 1}}{{3 - x}}\\
= + \infty
\end{array}$