1/2+1/6+1/12+1/20+1/30+1/42+1/56

2 câu trả lời

Đáp án:

Giải thích các bước giải:

$S=\frac{1}{2}+ \frac{1}{6}+ \frac{1}{12}+...+ \frac{1}{56}$

$= \frac{1}{1.2}+ \frac{1}{2.3}+ \frac{1}{3.4}+....+ \frac{1}{6.7} + \frac{1}{7.8}$

$= 1- \frac{1}{2}+ \frac{1}{2} - \frac{1}{3}+ \frac{1}{3}- \frac{1}{4}+....+ \frac{1}{6}- \frac{1}{7} + \frac{1}{7}- \frac{1}{8}$

$=1- \frac{1}{8}= \frac{7}{8}$

1/2+1/6+1/12+1/20+1/30+1/42+1/56= 1/1.2 +1/2.3 +1/3.4 +1/4.5 +1/5.6 +1/6.7 +1/7.8

= 1- 1/8 = 7/8