Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;0;0 \right),\,\,B\left( 0;2;0 \right),\,\,C\left( 0;0;-\,3 \right).\) Gọi \(H\) là trực tâm của tam giác \(ABC,\) thì độ dài đoạn \(OH\) là
Trả lời bởi giáo viên
Vì \(H\) là trực tâm của \(\Delta \,ABC\) và \(O.ABC\) là tứ diện vuông tại \(O\)
\(\Rightarrow \,\,OH\) vuông góc với mặt phẳng \(\left( ABC \right)\) \(\Rightarrow \,\,d\left( O;\left( ABC \right) \right)=OH.\)
Phương trình mặt phẳng \(\left( ABC \right)\) là \(\frac{x}{1}+\frac{y}{2}+\frac{z}{-\,3}=1\Leftrightarrow 6x+3y-2z-6=0.\)
Vậy \(OH=d\left( O;\left( ABC \right) \right)\)\(=\dfrac{\left| 6.0+3.0+2.0-6 \right|}{\sqrt{{{6}^{2}}+{{3}^{2}}+{{2}^{2}}}}=\dfrac{6}{7}.\)
Hướng dẫn giải:
Dựa vào tính chất hình học lớp 11, khi H là trực tâm của tam giác ABC với tứ diện vuông OABC thì OH vuông góc với mặt phẳng (ABC).