Một vật có khối lượng không đổi, thực hiện đồng thời hai dao động điều hòa có phương trình dao động lần lượt là \({x_1} = {\rm{ }}10cos\left( {2pt{\rm{ }} + {\rm{ }}\varphi } \right)\) cm và \({x_2} = {A_2}cos(2\pi t - \dfrac{\pi }{2})cm\) thì dao động tổng hợp là \(x = Acos(2\pi t - \dfrac{\pi }{3})cm\). Khi năng lượng dao động của vật cực đại thì biên độ dao động A2 có giá trị là
Trả lời bởi giáo viên
\(\begin{array}{l}\dfrac{{10}}{{\sin 30}} = \dfrac{{{A_2}}}{{\sin (60 + \varphi )}} = \dfrac{A}{{\sin (90 - \varphi )}}\\ \Rightarrow A = \dfrac{{10\sin (90 - \varphi )}}{{\sin 30}}\end{array}\)
Năng lượng dao động cực đại thì \({A_{max}} \Rightarrow \sin \left( {90 - \varphi } \right) = 1 \Rightarrow \varphi = 0\)
Khi đó: \(\left\{ \begin{array}{l}A = \dfrac{{10\sin 90}}{{\sin 30}} = 20cm\\{A_2} = \dfrac{{10.\sin 60}}{{\sin 30}} = 10\sqrt 3 cm\end{array} \right.\)
Hướng dẫn giải:
Sử dụng giản đồ vectơ