Câu hỏi:
2 năm trước

Một tam giác có chiều cao bằng   $\dfrac{3}{4}$  cạnh đáy. Nếu chiều cao tăng thêm $3$  $dm$ và cạnh đáy giảm đi $3$  $dm$  thì diện tích của nó tăng thêm $12$  $d{m^2}$ . Tính diện tích của tam giác ban đầu.

Trả lời bởi giáo viên

Đáp án đúng: d

Gọi chiều cao của tam giác là \(h\), cạnh đáy tam giác là \(a\). \(\left( {h,a \in {N^*}, a>3,dm} \right)\).

Diện tích tam giác ban đầu là $\dfrac{1}{2}ah$ ($d{m^2}$)

chiều cao bằng   $\dfrac{3}{4}$  cạnh đáy nên ta có phương trình \(h = \dfrac{3}{4}a\)

Nếu chiều cao tăng thêm $3$  $dm$ và cạnh đáy giảm đi $3$  $dm$  thì diện tích của nó tăng thêm $12$  $d{m^2}$

Nên ta có hương trình  \(\dfrac{1}{2}\left( {h + 3} \right)\left( {a - 3} \right) - \dfrac{1}{2}ah = 12\)

Ta có hệ phương trình : \(\left\{ \begin{array}{l}h = \dfrac{3}{4}a\\\dfrac{1}{2}\left( {h + 3} \right)\left( {a - 3} \right) - \dfrac{1}{2}ah = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}h = \dfrac{3}{4}a\\\dfrac{{ - 3h}}{2} + \dfrac{{3a}}{2} = \dfrac{{33}}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 44\\h = 33\end{array} \right.\) (thỏa mãn)

Vậy chiều cao của tam giác bằng \(44dm\), cạnh đáy tam giác bằng \(33dm\).

Suy ra diện tích tam giác ban đầu là $\dfrac{1}{2}.44.33 = 726\,\,\left( {d{m^2}} \right)$.

Hướng dẫn giải:

Giải bài toán có nội dung hình học  bằng cách  lập hệ phương trình.

Chú ý các công thức: Diện tích tam giác $ = $  (cạnh đáy$.$Chiều cao) $:2$

Câu hỏi khác