Câu hỏi:
2 năm trước
Giới hạn $\lim \left( {\sqrt {{n^2} - n + 1} - \sqrt {{n^2} + 1} } \right)$ bằng?
Trả lời bởi giáo viên
Đáp án đúng: b
$\begin{array}{l}\lim ( {\sqrt {{n^2} - n + 1} - \sqrt {{n^2} + 1} } ) \\ =\lim \frac{{( {\sqrt {{n^2} - n + 1} - \sqrt {{n^2} + 1} }) ( {\sqrt {{n^2} - n + 1} + \sqrt {{n^2} + 1} } )}}{{\sqrt {{n^2} - n + 1} + \sqrt {{n^2} + 1} }}\\ = \lim \frac{{{n^2} - n + 1 - {n^2} - 1}}{{\sqrt {{n^2} - n + 1} + \sqrt {{n^2} + 1} }} \\= \lim \frac{{ - n}}{{\sqrt {{n^2} - n + 1} + \sqrt {{n^2} + 1} }} \\= \lim \frac{{ - 1}}{{\sqrt {1 - \frac{1}{n} + \frac{1}{{{n^2}}}} + \sqrt {1 + \frac{1}{{{n^2}}}} }} \\= -\frac{{1}}{2}\end{array}$
Hướng dẫn giải:
- Nhân liên hợp,
- Chia cả tử mẫu của phân thức cho n.