Giá trị biểu thức \(\left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {7 - 2\sqrt {10} } \) là
Trả lời bởi giáo viên
\(\left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {7 - 2\sqrt {10} } \)
\(=\left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {5 - 2\sqrt 5 .\sqrt 2 + 2} = \left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}} = \left( {\sqrt 5 + \sqrt 2 } \right)\left| {\sqrt 5 - \sqrt 2 } \right|\)
\( = \left( {\sqrt 5 + \sqrt 2 } \right)\left( {\sqrt 5 - \sqrt 2 } \right) = 5 - 2 = 3\)
Hướng dẫn giải:
-Đưa biểu thức dưới dấu căn về hằng đẳng thức \({a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2};{a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\)
-Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,khi\,\,A \ge 0\\ - A\,\,khi\,\,A < 0\end{array} \right.\)