Câu hỏi:
2 năm trước

Giả sử ban đầu có một mẫu chất phóng xạ \(X\) nguyên chất có chu kì bán rã là \(T\) và biến thành hạt nhân \(Y\). Tại thời điểm \(t_0\), tỉ lệ giữa số hạt nhân \(Y\) và hạt nhân \(X\) là \(\dfrac{{13}}{{24}}\). Tại thời điểm \(t = t_0 +2T\) thì tỉ lệ đó là    

Trả lời bởi giáo viên

Đáp án đúng: a

\(\dfrac{{{N_1}'}}{{{N_1}}} = \dfrac{{{N_0}(1 - {2^{ - \dfrac{{{t_0}}}{T}}})}}{{{N_0}{{.2}^{ - \dfrac{{{t_0}}}{T}}}}} = {2^{\dfrac{{{t_0}}}{T}}} - 1 = \dfrac{{13}}{{24}} \\\to {2^{\dfrac{{{t_0}}}{T}}} = \dfrac{{37}}{{24}}\)

\( \to \dfrac{{{N_2}'}}{{{N_2}}} = {2^{\dfrac{{({t_0} + 2T)}}{T}}} - 1 = {2^{\dfrac{{{t_0}}}{T}}}{.2^2} - 1 = \dfrac{{37}}{{24}}.4 - 1 = \dfrac{{31}}{6}\)

Hướng dẫn giải:

Sau thời gian t thì số hạt của chất phóng xạ còn lại là: \(N = {N_O}{.2^{ - \dfrac{t}{T}}}\)

Số hạt nhân mới hình thành :\({N_O} - {N_O}{.2^{ - n}}\)

Câu hỏi khác