Câu hỏi:
2 năm trước

Cho tam giác $ABC$ có \(\widehat A = {90^0}\), tia phân giác $BD$  của góc $B$ (\(D \in AC\)). Trên cạnh $BC$  lấy điểm $E$  sao cho $BE = BA.$ Hai góc nào sau đây bằng nhau?

Trả lời bởi giáo viên

Đáp án đúng: c
Lời giải - Đề kiểm tra 15 phút chương 6: Tam giác - Đề số 2 - ảnh 1

Xét hai tam giác $BDA$  và $BDE$  có:$BA = BE\left( {gt} \right),$ \(\widehat {{B_1}} = \widehat {{B_2}}\) (do $BD$ là tia phân giác của góc B);

$BD$ là cạnh chung. Suy ra \(\Delta BDA = \Delta BDE\) (c.g.c) 

Suy ra \(\widehat {BED} = \widehat {BAD} = {90^ \circ }\) (hai góc tương ứng)

Trong các tam giác $ABC$ và $EDC$ vuông ở $A$ và $E,$ ta có:

\(\widehat {ABC} + \widehat C = {90^ \circ }\)  và \(\widehat {EDC} + \widehat C = {90^ \circ }\), suy ra \(\widehat {EDC} = \widehat {ABC}\).

Hướng dẫn giải:

Sử dụng trường hợp bằng nhau thứ hai của tam giác để suy ra \(\widehat {BED} = \widehat {BAD} = 90^\circ \) và lập luận để chỉ ra \(\widehat {EDC} = \widehat {ABC}.\)

Câu hỏi khác