Câu hỏi:
2 năm trước
Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$ và $b$ sao cho $A$ chia $9$ dư $2.$
Trả lời bởi giáo viên
Đáp án đúng: a
Ta có: \(a;\,\,b\,\,\, \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\) và \(a \ne 0.\)
A chia $9$ dư $2$ \( \Rightarrow a + 7 + 8 + 5 + b = a + b + 20\) chia $9$ dư $2$ hay \(\left( {a + b + 18} \right)\,\, \vdots \,\,9\) .
Mà \(18 \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \in \left\{ {9;18} \right\}\).
Hướng dẫn giải:
Áp dụng: Một số chia $9$ dư bao nhiêu thì tổng các chữ số của nó chia $9$ cũng dư bấy nhiêu.