Cho \({q_1} = {3.10^{ - 10}}C,{\rm{ }}{q_2} = - {3.10^{ - 10}}C\), đặt tại A và B trong dầu có \(\varepsilon = 2\) biết \(AB = 2{\rm{ }}cm\) . Xác định vectơ \(\vec E\) tại điểm \(H\) - là trung điểm của \(AB\).
Trả lời bởi giáo viên
- Gọi cường độ điện trường do \({q_1}\) gây ra là $E_1$; do $q_2$ gây ra là $E_2$
- Theo nguyên lí chồng chất điện trường:\(\overrightarrow E = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} \)
Vì \({E_1},{\rm{ }}{E_2}\) là 2 véc tơ cùng phương, cùng chiều nên: \(E{\rm{ }} = {\rm{ }}{E_1} + {\rm{ }}{E_2}\)
Ta có, cường độ điện trường: \(E = k\dfrac{{\left| Q \right|}}{{\varepsilon .{r^2}}}\)
Thay \({q_1} = {3.10^{ - 10}}C,{\rm{ }}{q_2} = - {3.10^{ - 10}}C,{\rm{ }}{r_1} = {\rm{ }}{r_2} = 1cm{\rm{ }},\varepsilon = 2\)
Ta có:
\( \to E = 2.{E_1} = 27.{\rm{ }}{10^3}V/m\)
Hướng dẫn giải:
+ Áp dụng nguyên lí chồng chất điện trường: \(\overrightarrow E = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} \)
+ Áp dụng biểu thức xác định cường độ điện trường: \(E = k\dfrac{{\left| Q \right|}}{{\varepsilon .{r^2}}}\)