Cho đoạn mạch xoay chiều \(AB\) gồm tụ điện có điện dung \(C\) thay đổi được, biến trở \(R,\) cuộn cảm thuần với độ tự cảm \(L.\) Hai điểm \(M, N\) đánh dấu trên đoạn mạch sao cho đoạn \(AN\) chứa \(C,\,\,R;\) đoạn \(MB\) chứa \(R,\) cuộn dây. Đặt điện áp \(u = U\sqrt 2 \cos \left( {100\pi t} \right)\,V\) vào hai đầu đoạn mạch \(AB.\) Để điện áp hiệu dụng \({U_{AN}}\) không phụ thuộc giá trị của biến trở \(R\) thì điện dung đặt là \({C_1}\), để điện áp hiệu dụng \({U_{MN}}\) không phụ thuộc giá trị của biến trở \(R\) thì điện dung đặt là \({C_2}.\) Tỉ số \(\dfrac{{18.\,{C_2}}}{{\,{C_1}}}\) là
Trả lời bởi giáo viên
+ Ta có: \({U_{AN}} = \dfrac{{U.\sqrt {{R^2} + Z_C^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
Để \({U_{AN}} \notin R \Rightarrow Z_{C1}^2 = {\left( {{Z_L} - {Z_{C1}}} \right)^2} \Rightarrow 2{Z_{C1}} = {Z_L}\,\,\,\left( 1 \right)\)
+ Lại có: \({U_{MN}} = {U_R} = \dfrac{{U.R}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
Để \({U_{MN}} \notin R \Rightarrow {Z_{C2}} - {Z_L}\,\,\,\left( 2 \right)\)
+ Từ (1) và (2):
\( \Rightarrow 2{Z_{C1}} - {Z_{C2}} \Rightarrow \dfrac{{{Z_{C1}}}}{{{Z_{C2}}}} = \dfrac{1}{2} \Leftrightarrow \dfrac{{{C_2}}}{{{C_1}}} = \dfrac{1}{2} \Rightarrow 18.\dfrac{{{C_2}}}{{{C_1}}} = 9\)
Hướng dẫn giải:
Đoạn \(AN\) chứa \(C, R.\)
Đoạn \(MN\) chứa \(R.\)
Điện áp hiệu dụng hai đầu đoạn \(AN\) và \(MN\) là:
\(\left\{ \begin{array}{l}{U_{AN}} = \dfrac{{U.\sqrt {{R^2} + Z_C^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\\{U_{MN}} = \dfrac{{U.R}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\end{array} \right.\)