Câu hỏi:
2 năm trước
Cho các phân số \(\dfrac{6}{{n + 8}}; \dfrac{7}{{n + 9}}; \dfrac{8}{{n + 10}};...;\dfrac{{35}}{{n + 37}}.\) Tìm số tự nhiên \(n\) nhỏ nhất để các phân số trên tối giản.
Trả lời bởi giáo viên
Đáp án đúng: a
Các phân số đã cho đều có dạng \(\dfrac{a}{{a + (n + 2)}}\)
Và tối giản nếu \(a\) và \(n + 2\) nguyên tố cùng nhau
Vì: \(\left[ {a + (n + 2)} \right] - a = n + 2\) với
\(a = 6;7;8;.....;34;35\)
Do đó \(n + 2\) nguyên tố cùng nhau với các số \(6;7;8;.....;34;35\)
Số tự nhiên \(n + 2\) nhỏ nhất thỏa mãn tính chất này là \(37\)
Ta có \(n + 2 = 37\) nên \(n = 37 - 2 = 35\)
Vậy số tự nhiên nhỏ nhất cần tìm là \(35\)
Hướng dẫn giải:
Đưa các phân số về dạng \(\dfrac{a}{{a + (n + 2)}}\) rồi lập luận