Trả lời bởi giáo viên

Đáp án đúng: c

+) Thay $x =  - 2;y =  - 3$ vào hệ \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 4\end{array} \right.\) ta được $\left\{ \begin{array}{l} - 2 - \left( { - 3} \right) = 1 \ne 3\\2.\left( { - 2} \right) - 3 =  - 7 \ne 4\end{array} \right.$ nên loại A.

+) Thay $x =  - 2;y =  - 3$ vào hệ $\left\{ \begin{array}{l}2x - y =  - 1\\x - 3y = 8\end{array} \right.$ ta được $\left\{ \begin{array}{l}2.\left( { - 2} \right) - \left( { - 3} \right) =  - 1\\ - 2 - 3.\left( { - 3} \right) = 7 \ne 8\end{array} \right.$ nên loại B.

+) Thay $x =  - 2;y =  - 3$ vào hệ $\left\{ \begin{array}{l}4x - 2y = 0\\x - 3y = 5\end{array} \right.$ ta được $\left\{ \begin{array}{l}4.\left( { - 2} \right) - 2.\left( { - 3} \right) =  - 2 \ne 0\\ - 2 - 3.\left( { - 3} \right) = 7 \ne 5\end{array} \right.$ nên loại D.

+) Thay $x =  - 2;y =  - 3$ vào hệ $\left\{ \begin{array}{l}2x - y =  - 1\\x - 3y = 7\end{array} \right.$ ta được $\left\{ \begin{array}{l}2.\left( { - 2} \right) - \left( { - 3} \right) =  - 1\\ - 2 - 3.\left( { - 3} \right) = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 =  - 1\\7 = 7\end{array} \right.$ nên chọn C.

Hướng dẫn giải:

Cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ.

Câu hỏi khác