Tính tích phân cận từ 0 đến 1 của x nhân căn bậc 2 (1-x^2)

2 câu trả lời

Đặt $u=\sqrt[]{1-x^2} → 2udu=-2xdx → xdx=-udu$

Đổi cận:

$x=0 → u=1$

$x=1 → u=0$

$→ \int\limits^1_0 {x\sqrt[]{1-x^2}} \, dx$

$=\int\limits^1_0 {u^2} \, du$

$=\dfrac{u^3}{3}|_{0}^{1}$

$=\dfrac{1}{3}$.

 

Đáp án:

\[I = \int\limits_0^1 {x.\sqrt {1 - {x^2}} dx}  = \dfrac{1}{3}\]

Giải thích các bước giải:

 Ta có:

\(\begin{array}{l}
I = \int\limits_0^1 {x.\sqrt {1 - {x^2}} dx} \\
t = 1 - {x^2} \Rightarrow \left\{ \begin{array}{l}
dt = \left( {1 - {x^2}} \right)'dx =  - 2xdx\\
x = 0 \Rightarrow t = 1\\
x = 1 \Rightarrow t = 0
\end{array} \right.\\
 \Rightarrow I = \int\limits_1^0 {\sqrt t .\dfrac{{ - dt}}{2}}  =  - \int\limits_0^1 {\sqrt t .\dfrac{{ - dt}}{2}}  = \dfrac{1}{2}\int\limits_0^1 {\sqrt t dt}  = \dfrac{1}{2}.\int\limits_0^1 {{t^{\dfrac{1}{2}}}dt} \\
 = \mathop {\left. {\dfrac{1}{2}.\dfrac{{{t^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right|}\nolimits_0^1  = \mathop {\left. {\dfrac{1}{3}{t^{\dfrac{3}{2}}}} \right|}\nolimits_0^1  = \dfrac{1}{3}.\left( {{1^{\dfrac{3}{2}}} - {0^{\dfrac{3}{2}}}} \right) = \dfrac{1}{3}
\end{array}\)

Vậy \(I = \int\limits_0^1 {x.\sqrt {1 - {x^2}} dx}  = \dfrac{1}{3}\)

Câu hỏi trong lớp Xem thêm