1 câu trả lời
Đáp án:
$\text{TXĐ: } D=\mathbb{R} \setminus \left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2}; k \in \mathbb{Z}\right\}.$
Giải thích các bước giải:
$y=\dfrac{1}{\sin 2x-\sqrt{3}\cos 2x}\\ \text{ĐKXĐ: } \sin 2x-\sqrt{3}\cos 2x \ne 0\\ \Leftrightarrow \dfrac{1}{2}\sin 2x-\dfrac{\sqrt{3}}{2}\cos 2x \ne 0\\ \Leftrightarrow \sin 2x \sin \dfrac{\pi}{6}-\cos 2x \cos \dfrac{\pi}{6}\ne 0\\ \Leftrightarrow \cos 2x \cos \dfrac{\pi}{6}-\sin 2x \sin \dfrac{\pi}{6}\ne 0\\ \Leftrightarrow \cos \left(2x+ \dfrac{\pi}{6} \right)\ne 0\\ \Leftrightarrow 2x+ \dfrac{\pi}{6} \ne \dfrac{\pi}{2}+k\pi(k \in \mathbb{Z}) \\ \Leftrightarrow 2x \ne \dfrac{\pi}{3}+k\pi(k \in \mathbb{Z}) \\ \Leftrightarrow x \ne \dfrac{\pi}{6}+\dfrac{k\pi}{2}(k \in \mathbb{Z})\\ \text{TXĐ: } D=\mathbb{R} \setminus \left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2}; k \in \mathbb{Z}\right\}.$