tìm các số tự nhiên x biết x+3 và 3x+1 đều là lũy thừa của 2
2 câu trả lời
Đáp án:
`x = 5`
Giải thích các bước giải:
`+)` Ta có :
`{3x + 1}/{x + 3} = 2`
`⇔ 3x + 1 = (x+3)×2`
`⇔ 3x + 1 = 2x + 6`
`⇔ 3x - 2x = 6 - 1`
`⇔ x = 5`
`+)` Kiểm tra lại kết quả
Thay `x = 5` vào `{3x + 1}/{x + 3} `
`{3.5 + 1}/{5 + 3}`
`= {16}/8`
`= 2`
`+)` Ta có `2` là lũy thừa của `2`
Vậy `x = 5` thì `x + 3` và `3x + 1` đều là lũy thừa của `2`
Đáp án:
`x =5`
Giải thích các bước giải:
Vì `x+3` và `3x+1` đều là lũy thừa của `2` và `x \in NN ; 3x+1 > x+3` thì :
`(3x+1)/(x+3)` đều là lũy thừa của `2` ( `\ge 0` )
Xét `2^1 =2`
`-> (3x+1)/(x+3) =2`
`-> 3x+1 = 2(x+6) =2x+6`
`-> 3x -2x =6 -1`
`-> x =5`
Vậy `x =5` thì ta được `x+3` và `3x+1` đều là lũy thừa của `2`
Thử lại :
`3x+1 = 3 . 5+1 = 15+1 = 16 =2^4` ( Đúng )
`x+3 = 5+3 = 8 =2^3` ( Đúng )
Xét `2^0 = 1` ta được :
` (3x+1)/(x+3) =1`
`-> 3x+1 =x+3`
`-> 3x -x = 3 -1`
`-> 2x = 2`
`-> x =1`
Thử lại ta thấy đúng.
Xét `2^n ( n >1)`
`-> (x+3)/(3x+1) =n`
`-> x+3= n(3x+1)`
`-> 3xn+ n =x+3`
`-> 3xn +n -x -3 =0`
`-> 3(xn -1) -(x+3) =0`
Lần lượt thay `n> 1` ta thấy đều không thỏa mãn.
Vậy `x =5` và `x =1`