tìm các số tự nhiên x biết x+3 và 3x+1 đều là lũy thừa của 2

2 câu trả lời

Đáp án:

 `x = 5`

Giải thích các bước giải:

`+)` Ta có :

`{3x + 1}/{x + 3} = 2`

`⇔ 3x + 1 = (x+3)×2`

`⇔ 3x + 1 = 2x + 6`

`⇔ 3x - 2x = 6 - 1`

`⇔ x = 5`

`+)` Kiểm tra lại kết quả

Thay `x = 5` vào `{3x + 1}/{x + 3} `

`{3.5 + 1}/{5 + 3}`

`= {16}/8`

`= 2`

`+)` Ta có `2` là lũy thừa của `2`

Vậy `x = 5` thì `x + 3` và `3x + 1` đều là lũy thừa của `2`

 

Đáp án:

 `x =5`  

Giải thích các bước giải: 

Vì `x+3` và `3x+1` đều là lũy thừa của `2` và `x \in NN ; 3x+1 > x+3` thì :

`(3x+1)/(x+3)` đều là lũy thừa của `2` ( `\ge 0` )

Xét `2^1 =2`

`-> (3x+1)/(x+3) =2` 

`-> 3x+1 = 2(x+6) =2x+6`

`-> 3x -2x =6 -1`

`-> x =5`

Vậy `x =5` thì ta được `x+3` và `3x+1` đều là lũy thừa của `2`

Thử lại :

`3x+1 = 3 . 5+1 = 15+1 = 16 =2^4` ( Đúng )

`x+3 = 5+3 = 8 =2^3` ( Đúng )

Xét `2^0 = 1` ta được :

` (3x+1)/(x+3) =1`

`-> 3x+1 =x+3`

`-> 3x -x = 3 -1`

`-> 2x = 2`

`-> x =1`

Thử lại ta thấy đúng.

Xét `2^n ( n >1)` 
`-> (x+3)/(3x+1) =n`

`-> x+3= n(3x+1)`

`-> 3xn+ n =x+3`

`-> 3xn +n -x -3 =0`

`-> 3(xn -1) -(x+3) =0`

Lần lượt thay  `n> 1` ta thấy đều không thỏa mãn.
Vậy `x =5` và `x =1`