2 câu trả lời
Đáp án:
Giải thích các bước giải: a) $\begin{array}{l} {\sin ^2}x = \frac{1}{2} \Leftrightarrow \frac{{1 - \cos 2x}}{2} = \frac{1}{2} \Leftrightarrow \cos 2x = 0\\ \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2} \end{array}$ b) $\begin{array}{l} \sin 3x + \sin \left( {\frac{\pi }{4} - \frac{x}{2}} \right) = 0 \Leftrightarrow \sin 3x = - \sin \left( {\frac{\pi }{4} - \frac{x}{2}} \right)\\ \Leftrightarrow \sin 3x = \sin \left( { - \frac{\pi }{4} + \frac{x}{2}} \right) \Leftrightarrow \left[ \begin{array}{l} 3x = - \frac{\pi }{4} + \frac{x}{2} + k2\pi \\ 3x = \pi + \frac{\pi }{4} - \frac{x}{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} \frac{{5x}}{2} = - \frac{\pi }{4} + k2\pi \\ \frac{{7x}}{2} = \frac{{5\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \frac{\pi }{{10}} + \frac{{k4\pi }}{5}\\ x = \frac{{5\pi }}{{14}} + \frac{{k4\pi }}{7} \end{array} \right. \end{array}$
Đáp án:
Giải thích các bước giải: sin^2x=(1-cos2x)/2=1/2
td 1-cos2x=1
td cos2x=0
td cos2x=cos pi/2 +kpi
td x=pi/4+kpi/2
sin3x+sin(pi/4-x/2)=0
td sin3x=-sin(pi/4-x/2)
td sin3x= sin(pi-pi/4-x/2)
td 3x= pi-pi/4-x/2+k2pi hoac 3x=pi-pi+pi/4+x/2+k2pi
td x=pi/10+k4pi/5 hoac x=3pi/14+k4pi/7