Giải phương trình : √(x^2-3x+2) +√(x^2-4x+3 ) = 2√(x^2-5x+4)
1 câu trả lời
Đáp án:
x=1
Giải thích các bước giải:
√x2−3x+2+√x2−4x+3=2√x2−5x+4DKXD:{x2−3x+2≥0x2−4x+3≥0x2−5x+4≥0⇔{[x≥2x≤1[x≥3x≤1[x≥4x≤1⇔[x≥4x≤1PT⇔√(x−1)(x−2)+√(x−1)(x−3)=2√(x−1)(x−4)Th1:x≤1⇔√1−x√2−x+√1−x√3−x=2√1−x√4−x⇔√1−x(√2−x+√3−x−2√4−x)=0⇔[√1−x=0√2−x+√3−x=2√4−x⇔[x=12−x+3−x+2√(2−x)(3−x)=4(4−x)(∗)(∗)⇔2√(2−x)(3−x)=11−2x⇔{11−2x≥04(x2−5x+6)=4x2−44x+121⇔{x≤11224x=97⇔x=9724(ktmx≤1)TH2:x≥4⇔√x−1√x−2+√x−1√x−3=2√x−1√x−4⇔√x−1(√x−2+√x−3−2√x−4)=0⇔[√x−1=0√x−2+√x−3=2√x−4⇔[x=1x−2+x−3+2√(x−2)(x−3)=4(x−4)(∗)(∗)⇔2√(x−2)(x−3)=2x−11⇔{x≥112x=9724(ktm)Vayx=1