Giải phương trình: a) (x - 1)² + (x - 2) √(x² + 1) = 0 b) (x - 2)² + (x - 4) √(x² + 4) = 0 c) (2x - 1)² + (x - 4) √(4x² + 1) = 0 d) x² - 2x + 2 + (x - 2) √(x² + 2) = 0
2 câu trả lời
Đáp án:
Giải thích các bước giải: a)(x−1)2+(x−2)√x2+1=0⇔x2−2x+1+(x−2)√x2+1=0⇔(x2+1)−2(x−2)+(x−2)√x2+1−4=0⇔(√x2+1−2)(√x2+1+2)+(x−2)(√x2+1−2)=0⇔[√x2+1−2=0√x2+1+2+x−2=0⇔[x=±√3√x2+1=−x(x≤0)(1)(1)⇔x2+1=x2(VN) Vậy x=±√3
a) Pt tuong duong vs
x2+1−(2x−4)+(x−2)√x2+1=4
Dat a=√x2+1,b=x−2 ta co
a2+ba−2b−4=0
Giai ptrinh bac 2 an a va coi b la tham so. Khi do Δ=b2+4(2b+4)=b+4)2.
Vay a=−b+(b+4)2=2 hoac a=−b−(b+4)2=−b−2.
TH1: a=2 thi x2+1=4 hay x = ±√3.
TH2: a=−b−2.
DK: b≤−2
Ta co
x2+1=x2−4x+4 hay x=3/4 (ko thoa man)
Vay x=±√3.
b) Pt tuong duong vs
x2+4−(4x−16)+(x−4)√x2+4=16
Dat a=√x2+4,b=x−4 ta co
a2+ba−4b−16=0
Giai ptrinh bac 2 an a va coi b la tham so. Khi do Δ=b2+4(4b+16)=b+8)2.
Vay a=−b+(b+8)2=4 hoac a=−b−(b+8)2=−b−4.
TH1: a=4 thi x2+4=16 hay x = ±2√3.
TH2: a=−b−4.
DK: b≤−4
Ta co
x2+4=x2−8x+16 hay x=3/2 (ko thoa man)
Vay x=±2√3.
Cac cau c), d) lam tuong tu nhe.