Giải giùm mình phương trình x(5$x^{3}$ + 2) - 2($\sqrt{2x + 1}$ - 1 ) = 0

2 câu trả lời

\[\begin{array}{l} x\left( {5{x^3} + 2} \right) - 2\left( {\sqrt {2x + 1} - 1} \right) = 0\,\,\,\left( * \right)\\ DK:\,\,\,x \ge - \frac{1}{2}.\\ \left( * \right) \Leftrightarrow 5{x^4} + 2x - 2\sqrt {2x + 1} + 2 = 0\\ \Leftrightarrow 2x + 1 - 2\sqrt {2x + 1} + 1 + 5{x^4} = 0\\ \Leftrightarrow {\left( {\sqrt {2x + 1} - 1} \right)^2} + 5{x^4} = 0\\ \Leftrightarrow \left\{ \begin{array}{l} \sqrt {2x + 1} - 1 = 0\\ {x^4} = 0 \end{array} \right.\,\,\,\left( {do\,\,\,\left\{ \begin{array}{l} {\left( {\sqrt {2x + 1} - 1} \right)^2} \ge 0\,\,\forall x \ge - \frac{1}{2}\\ {x^4} \ge 0\,\,\forall x \end{array} \right.} \right)\\ \Leftrightarrow \left\{ \begin{array}{l} \sqrt {2x + 1} = 1\\ x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x + 1 = 1\\ x = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 0\\ x = 0 \end{array} \right. \Leftrightarrow x = 0\,\,\,\left( {tm} \right).\\ Vay\,\,\,pt\,\,co\,\,nghiem\,\,x = 0. \end{array}\]

Hiểu biết

x

(

5

x

3

+

2

)

2

(

2

x

+

1

1

)

=

0

(

)

D

K

:

x

1

2

.

(

)

5

x

4

+

2

x

2

2

x

+

1

+

2

=

0

2

x

+

1

2

2

x

+

1

+

1

+

5

x

4

=

0

(

2

x

+

1

1

)

2

+

5

x

4

=

0

{

2

x

+

1

1

=

0

x

4

=

0

(

d

o

{

(

2

x

+

1

1

)

2

0

x

1

2

x

4

0

x

)

{

2

x

+

1

=

1

x

=

0

{

2

x

+

1

=

1

x

=

0

{

x

=

0

x

=

0

x

=

0

(

t

m

)

.

V

a

y

p

t

c

o

n

g

h

i

e

m

x

=

0.