1 câu trả lời
1. (a+b)2=a2+2ab+b2
Ta có
VT=(a+b)(a+b)=a2+ab+ba+b2=a2+ab+ab+b2=a2+2ab+b2=VP.
2. (a−b)2=a2−2ab+b2
Ta có
VT=(a−b)(a−b)=a2−ab−ba+b2=a2−2ab+b2=VP
3. a2−b2=(a−b)(a+b)
Ta có
VP=(a−b)(a+b)=a2−ab+ba−b2=a2−b2=VT
4. (a+b)3=a3+3a2b+3ab2+b3
Ta có
VT=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b)
=a3+a2b+2a2b+2ab2+b2a+b3
=a3+3a2b+3ab2+b3=VP
5. (a−b)3=a3−3a2b+3ab2−b3
Ta có
VT=(a−b)(a−b)(a−b)=(a2−2ab+b2)(a−b)
=a3−a2b−2a2b+2ab2+b2a−b3
=a3−3a2b+3ab2−b3=VP