Cho tam giác ABC vuông tại A (AB<AC). Vẽ (O) đường kính AC cắt BC tại D. Gọi H và K lần lượt là trung điểm của AD và DC. Tia OH cắt AB tại E, tia OK cắt ED tại N và cắt (O) tại I. Chứng minh:
a) AD là đường cao của tam giác ABC.
b) DE là tiếp tuyến (O)
c) Tứ giác OHDK là hình chữ nhật
d) Tia DI là tia p/giác góc NDC .
e) Gọi S là giao điểm của OB với AD. Từ S vẽ đường thẳng vuông góc với AO cắt tia OH tại Q. Chứng minh 3 điểm A,Q,N thẳng hàng