cho hình chữ nhật có AB=2AD .gọi E là điểm bất kf trên cạnh BC .Gọi F là giao điểm của đường thẳng AE và DC .QUa A vẽ đường thẳng vuông góc với AE cắt CD tại M .a) chứng minh rằng 4/AB^2 =4/AE^2 +1/AF^2 ...b) Kẻ DNvuô ng góc với AM ( điểm N thuộc AM .Đặt góc AMD=a .chứng minh MN= MF .co s ^3 a

1 câu trả lời

a) Gọi N là trung điểm của AB

I là trung điểm của AE

NI∥=12BE

BEAB

NIAB

ΔANIN

Xét Δ vuông ADMΔ vuông ANI có:

^A1=^A3 (cùng phụ với ^A2)

AD=AN (=12AB)

Δ vuông ADM=Δ vuông ANI (cgv.gn)

AI=AM=12AE

Ta có: 1AD2=1AM2+1AF2

1(AB2)2=1(AE2)2+1AF2

4AB2=4AE2+1AF2

b) Δ vuông ADM có:

MD2=MN.MA

MN=MD2MA

=MD3MA3.MA2MD (1)

ΔAMF: AM2=MD.MFAM2MD=MF

Δ vuông AMDcosa=MDMA

Thay vào (1) suy ra MN=cos3a.MF (đpcm)

Câu hỏi trong lớp Xem thêm