Ai giải cho mình bài này với ạ xíu mình nộp bài tết 8 \cos x=\frac{\sqrt{3}}{\sin x}+\frac{1}{\cos x}
2 câu trả lời
$8 \cos x=\frac{\sqrt{3}}{\sin x}+\frac{1}{\cos x}$
$\frac{\sqrt{3} \cos x+\sin x}{\sin x \cdot \cos x}=8 \cos x$
$\Leftrightarrow \sqrt{3} \cdot \cos x+\sin x=8 \cdot \cos ^{2} x \cdot \sin 01$
\( \Leftrightarrow \) $4 \sin 2 x \cdot \cos x=\sqrt{3} \cos x+\sin x$
\( \Leftrightarrow \) 2.$(\sin 3 x+\sin x)=\sqrt{3}(\cos x+\sin x)$
\( \Leftrightarrow \) $2 \sin 3 x=\sqrt{3} \cos x-\sin x$.
\( \Leftrightarrow \) $\sin 3 x=\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x$
\( \Leftrightarrow \) $\sin 3 x=\sin \left(\frac{\pi}{3}-x\right)$
Điều kiện xác định:
$\begin{array}{l} \left\{ \begin{array}{l} \sin x \ne 0\\ \cos x \ne 0 \end{array} \right. \Rightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \\ \Leftrightarrow x \ne \dfrac{{k\pi }}{2}\left( {k \in \mathbb Z} \right) \end{array}$
$\begin{array}{l}
8\cos x = \dfrac{{\sqrt 3 }}{{\sin x}} + \dfrac{1}{{\cos x}}\\
\Leftrightarrow 8\cos x = \dfrac{{\sqrt 3 \cos x + \sin x}}{{\sin x\cos x}}\\
\Leftrightarrow 8{\cos ^2}x\sin x = \sqrt 3 \cos x + \sin x\\
\Leftrightarrow 2\cos x\sin x.4\cos x = \sqrt 3 \cos x + \sin x\\
\Leftrightarrow 4\cos x\sin 2x = \sqrt 3 \cos x + \sin x\\
\Leftrightarrow 2\sin 3x + 2\sin x = \sqrt 3 \cos x + \sin x\\
\Leftrightarrow 2\sin 3x = \sqrt 3 \cos x - \sin x\\
\Leftrightarrow 2\sin 3x = 2\cos \left( {x + \dfrac{\pi }{3}} \right) \Leftrightarrow \cos \left( {\dfrac{\pi }{2} - 3x} \right) = \cos \left( {x + \dfrac{\pi }{3}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{\pi }{2} - 3x = x + \dfrac{\pi }{3} + k2\pi \\
\dfrac{\pi }{2} - 3x = - x - \dfrac{\pi }{3} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
4x = \dfrac{\pi }{6} - k2\pi \\
2x = \dfrac{{5\pi }}{6} - k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{24}} - k\dfrac{\pi }{2}\\
x = \dfrac{{5\pi }}{{12}} - k\pi
\end{array} \right.\left( {k \in \mathbb Z} \right)
\end{array}$