Sau \(2s\) kể từ lúc giọt nước thứ \(2\) bắt đầu rơi, khoảng cách giữa \(2\) giọt nước là \(25m\). Tính xem giọt nước thứ \(2\) được nhỏ rơi trễ hơn giọt nước thứ nhất bao lâu ? Lấy \(g = 10m/{s^2}\)
Trả lời bởi giáo viên
+ Chọn HQC :
- Gốc tọa độ O tại vị trí rơi.
- Chiều dương hướng xuống
+ Gốc thời gian
\(t = 0\) là lúc giọt \(2\) rơi \( \to \left\{ \begin{array}{l}{t_{{0_1}}} \ne 0\\{t_{{0_2}}} = 0\end{array} \right.\)
+ Phương trình chuyển động của \(2\) giọt nước là :
\({s_1} = \frac{1}{2}g{\left( {t + {t_{01}}} \right)^2}\) và
\({s_2} = \frac{1}{2}g{t^2}\)
+ Theo đề bài tại
\(t = 2s\) ta có : \({s_1} - {s_2} = 25m\)
\(\begin{array}{l} \leftrightarrow \frac{1}{2}g{\left( {t + {t_{01}}} \right)^2} - \frac{1}{2}g{t^2} = 25\\ \leftrightarrow 5{\left( {2 + {t_{01}}} \right)^2} - {5.2^2} = 25\\ \leftrightarrow t_{01}^2 + 4{t_{01}} - 5 = 0\\ \to \left[ \begin{array}{l}{t_{01}} = 1\\{t_{01}} = - 5(loai)\end{array} \right.\end{array}\)
\( \to {t_{01}} = 1s\)
Vậy giọt thứ 2 rơi sau giọt thứ nhất 1s.
Hướng dẫn giải:
+ Chọn hệ quy chiếu: gốc tọa độ, chiều chuyển động
+ Chọn gốc thời gian
+ Viết phương trình chuyển động của 2 giọt nước
+ Giải phương trình : \({s_1} - {s_2} = \Delta s\)