Một viên đạn khối lượng \(14g\) chuyển động với vận tốc \(400m/s\) theo phương ngang xuyên qua tấm gỗ dày \(5cm\). Vận tốc của viên đạn sau khi xuyên qua gỗ là \(120m/s\). Lực cản trung bình của tấm gỗ tác dụng lên viên đạn là :
Trả lời bởi giáo viên
+ Động năng của viên đạn trước khi xuyên qua tấm gỗ : ${{\rm{W}}_{{d_1}}} = \dfrac{1}{2}mv_1^2 = \dfrac{1}{2}0,{014.400^2} = 1120J$
+ Động năng của viên đạn sau khi xuyên qua tấm gỗ : ${{\rm{W}}_{{d_2}}} = \dfrac{1}{2}mv_2^2 = \dfrac{1}{2}0,{014.120^2} = 100,8J$
+ Áp dụng định lí biến thiên động năng, ta có :
${{\rm{W}}_{{d_2}}} - {{\rm{W}}_{{d_1}}} = {A_{ng}} = F.s$
= > Lực cản trung bình tác dụng lên viên đạn : \(F = \dfrac{{{{\rm{W}}_{{d_2}}} - {{\rm{W}}_{{d_1}}}}}{s} = \dfrac{{100,8 - 1120}}{{0,05}} = - 20384N\)
Hướng dẫn giải:
+ Sử dụng biểu thức tính động năng : ${{\rm{W}}_d} = \dfrac{1}{2}m{v^2}$
+ Sử dụng định lí biến thiên động năng : ${{\rm{W}}_{{d_2}}} - {{\rm{W}}_{{d_1}}} = {A_{ng}}$
+ Sử dụng biểu thức tính công : \(A = Fs\cos \alpha \)