Xét mẫu nguyên tử Hidro của Bo, coi chuyển động của electron trên quỹ đạo dừng là chuyển động tròn đều. Tỉ số giữa tốc độ của electron trên quỹ đạo K và trên quỹ đạo M là
Trả lời bởi giáo viên
Công thức tính lực hướng tâm: \({F_{ht}} = \frac{{m{v^2}}}{r}\)
Biểu thức của định luật Culong: \(F = \frac{{k.\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)
Khi electron chuyển động trên quỹ đạo dừng thì lực hút tĩnh điện đóng vai trò lực hướng tâm.
Ta có: \(k\frac{{\left| {{q_1}{q_2}} \right|}}{{r_n^2}} = \frac{{m{v^2}}}{{{r_n}}} \Rightarrow {v_n} = \sqrt {k.\frac{{\left| {{q_1}{q_2}} \right|}}{{m.{r_n}}}} \)
\( \Rightarrow \frac{{{v_K}}}{{{v_M}}} = \sqrt {\frac{{k.\frac{{\left| {{q_1}{q_2}} \right|}}{{m.{r_K}}}}}{{k.\frac{{\left| {{q_1}{q_2}} \right|}}{{m.{r_M}}}}}} = \sqrt {\frac{{{r_M}}}{{{r_K}}}} \)
Mặt khác bán kính quỹ đạo dừng được xác định là \({r_n} = {\rm{ }}{n^2}.{r_0}\)
Quỹ đạo K ứng với \(n = 1\); quỹ đạo M ứng với \(n = 3\)
Nên tỉ số \(\frac{{{v_L}}}{{{v_N}}} = \frac{{\sqrt {{3^2}.{r_0}} }}{{\sqrt {{1^2}.{r_0}} }} = 3\)
Hướng dẫn giải:
Công thức tính lực hướng tâm: \({F_{ht}} = \frac{{m{v^2}}}{r}\)
Biểu thức của định luật Culong: \(F = \frac{{k.\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)
Khi electron chuyển động trên quỹ đạo dừng thì lực hút tĩnh điện đóng vai trò lực hướng tâm.