100g nước ở nhiệt độ 200C đựng trong một cốc nhôm khối lượng 50g. Thả một quả cầu kim loại khối lượng 50g đã nung nóng bằng sắt vào trong cốc nước, nhiệt độ từ quả cầu kim loại đã làm 5g nước bị hóa hơi trong quá trình tiếp xúc. Nhiệt độ trong cốc tăng lên đến khi có cân bằng nhiệt thì nhiệt độ nước trong cốc là 800C. Tính nhiệt độ ban đầu của quả cầu kim loại trước khi nhúng vào trong nước. Coi nhiệt độ truyền ra ngoài môi trường là không đáng kể. Biết nhiệt dung riêng của nước là 4180J/kg, nhiệt dung riêng của sắt 460J/kg.K, nhiệt dung riêng của nhôm 880J/kg.K, nhiệt hóa hơi của nước 2,26.106J/kg.
Trả lời bởi giáo viên
Ta có:
\({Q_{toa}}\) là nhiệt lượng mà sắt tỏa ra
\({Q_{thu}}\) là nhiệt lượng mà nước và nhôm nhận được để tăng nhiệt độ lên 800C và nhiệt lượng của 5g nước tăng từ 200C lên 1000C rồi hóa hơi
Khi quả cầu bắt đầu chạm vào \({m_1} = 5g\) nước đã bốc hơi nên lượng nước tăng từ 200C lên 800C chỉ có \(m' = 100 - 5 = 95g\)
+ \({Q_{toa}} = {m_{F{\rm{e}}}}{c_{F{\rm{e}}}}(t - 80)\)
+ \({Q_{thu}} = {m_{Al}}{c_{Al}}(80 - 20) + m'{c_{nc}}(80 - 20) + {m_1}{c_{nc}}(100 - 20) + {m_1}L\)
Theo phương trình cân bằng nhiệt, ta có:
\(\begin{array}{l}{Q_{toa}} = {Q_{thu}}\\ \leftrightarrow {m_{F{\rm{e}}}}{c_{F{\rm{e}}}}(t - 80) = {m_{Al}}{c_{Al}}(80 - 20) + m'{c_{nc}}(80 - 20) + {m_1}{c_{nc}}(100 - 20) + {m_1}L\\ \to t = {1800^0}C\end{array}\)
Hướng dẫn giải:
+ Vận dụng biểu thức tính nhiệt lượng tỏa ra hoặc thu vào cần cung cấp để một vật thay đổi từ nhiệt độ t1 sang nhiệt độ t2: \(Q = mc\Delta t\)
+ Vận dụng biểu thức tính nhiệt nóng chảy của vật rắn: \(Q = \lambda m\)
+ Vận dụng biểu thức tính nhiệt hóa hơi của chất lỏng: \(Q = Lm\)
+ Áp dụng phương trình cân bằng nhiệt: \({Q_{toa}} = {Q_{thu}}\)