Đọc hiểu chủ đề công nghệ - Đề số 7
Kỳ thi ĐGTD ĐH Bách Khoa
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Ý chính của đoạn 3 là gì?
Ý chính của đoạn 3: Mô tả cơ chế hoạt động của hydrogel.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Cụm từ “acid hyaluronic” ở đoạn 3 là gì?
Cụm từ “acid hyaluronic” ở đoạn 3 là phân tử đường.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Cellulose để sản xuất băng quấn được tạo ra như thế nào?
Cellulose để sản xuất băng quấn được vi khuẩn Acetobacter xylinum tiết ra trên bề mặt hydrogel
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Tác giả đề cập đến "khuôn mặt của một con búp bê” ở đoạn 5 để minh hoạ điều gì?
Tác giả đề cập đến "khuôn mặt của một con búp bê” ở đoạn 5 để minh hoạ cho hình dạng bề mặt mà in 3-D có khả năng xử lý.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Đâu là nhận định của GS. Anne Meyer về nghiên cứu của TS. Patrick Rühs?
Nhận định của GS. Anne Meyer: Đây là nghiên cứu đầu tiên phát triển một loại hydrogel vi khuẩn.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Theo đoạn 6, vấn đề nào có thể xảy ra khi tái sử dụng vi khuẩn trong lưới?
Theo đoạn 6, môi trường bên ngoài bị nhiễm khuẩn khi tái sử dụng vi khuẩn trong lưới.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Mực sinh học trong xử lý tràn dầu khác và trong xử lý ô nhiễm phenol khác nhau ở điểm gì?
Mực sinh học trong xử lý tràn dầu khác và trong xử lý ô nhiễm phenol khác nhau: Cách in 3-D tạo thành lưới gel.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Vai trò nào dưới đây của vi khuẩn KHÔNG được nhắc đến trong bài đọc?
Tổng hợp gelatin KHÔNG được nhắc đến trong bài đọc.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Ý chính của bài đọc trên là gì?
Nội dung chính: Các vấn đề về plasma cần được các nhà khoa học nghiên cứu và giải đáp.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Điều gì KHÔNG thể rút ra từ đoạn 1 và đoạn 2?
Lò phản ứng nhiệt hạch đầu tiên được xây dựng vào những năm 1950 không có trong đoạn 1 và đoạn 2.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Theo đoạn 3, sự giống nhau giữa lò phản ứng T-15 và T15-MD là gì?
Sự giống nhau giữa lò phản ứng T-15 và T15-MD là chế độ H.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Tác giả so sánh lò phản ứng T15-MD và Globus-M2 để chứng minh điều gì?
Tác giả so sánh lò phản ứng T15-MD và Globus-M2 để chứng minh kích thước có ảnh hưởng đến hiệu suất năng lượng.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Tại sao lò phản ứng Tokamak T15-MD có thể thực hiện được nhiệm vụ ở “quy mô vũ trụ”?
Lò phản ứng Tokamak T15-MD có thể thực hiện được nhiệm vụ ở “quy mô vũ trụ” vì nó có thể mô phỏng được quá trình hoạt động của các vì sao.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Đâu KHÔNG phải là ưu điểm của công nghệ tạo năng lượng từ các phản ứng nhiệt hạch có kiểm soát?
Năng lượng tạo ra có thể tái tạo KHÔNG phải là ưu điểm của công nghệ tạo năng lượng từ các phản ứng nhiệt hạch có kiểm soát.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Tại sao các nhà khoa học cần phải nghiên cứu về điện trường?
Các nhà khoa học cần phải nghiên cứu về điện trường để kiểm soát trạng thái của plasma.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Khi ở “chế độ L”, plasma có đặc tính gì?
Khi ở “chế độ L”, plasma có thể mất khi nhiệt độ tăng.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Theo đoạn 7 và 8, trọng tâm nghiên cứu trong tương lai gần của các nhà khoa học là gì?
Theo đoạn 7 và 8, trọng tâm nghiên cứu trong tương lai gần của các nhà khoa học là nhu cầu sử dụng điện năng toàn cầu hàng năm.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Cuối năm 2021, một thành tựu khoa học mới trong lĩnh vực tìm kiếm nguồn năng lượng hầu như vĩnh cửu và tuyệt đối sạch về mặt sinh thái đã được ghi nhận. Một dự án, mặc dù có quy mô nhỏ, nhưng thuộc tầm cỡ “Megascience”, là lò phản ứng Tokamak Kurchatov T-15MD. Thiết bị này sẽ cho phép các nhà khoa học khám phá các công nghệ nhiệt hạch có kiểm soát để thu được nguồn năng lượng hầu như không cạn kiệt và an toàn với môi trường.
2. Thuật ngữ “tokamak” xuất hiện vào những năm 50 của thế kỷ trước, khi các nhà khoa học Liên Xô cho ra đời một thiết bị có dạng một chiếc bánh rán, ở trung tâm là từ trường chứa một plasma được nung nóng đến nhiệt độ cực lớn. Kể từ đó, các chuyên gia Nga luôn là những người tiên phong trong lĩnh vực nghiên cứu về nguồn năng lượng plasma (plasma được coi là một dạng vật chất hoàn toàn mới, ngoài 3 dạng vật chất quen thuộc đã được loài người chinh phục là rắn, lỏng, và khí). Lò phản ứng nhiệt hạch “tokamak” T-15MD được chế tạo năm 2021 thuộc loại độc đáo duy nhất trên thế giới, có công suất cao, với kích thước nhỏ gọn.
3. Tokamak T-15MD được thiết kế và chế tạo hoàn toàn tại Nga trong vòng 10 năm. Đây là phiên bản sửa đổi của lò phản ứng T-15, đã hoạt động tại Viện Kurchatov từ cuối những năm 1980. Nó khác với lò tiền nhiệm của nó ở hình chữ D. Trong khi lò T-15 có tiết diện plasma tròn, lò T-15MD có plasma hình chữ D giúp nó có thể duy trì plasma ở một chế độ hoàn thiện - chế độ H. Chế độ H là cần thiết để thu được năng lượng cao từ quá trình đốt cháy nhiệt hạch trong các lò phản ứng. Cũng có thể thu được các chế độ như vậy trong plasma có tiết diện tròn, tuy nhiên trong plasma hình chữ D, có thể đạt được các kết quả khả quan hơn. Tokamak T-15MD là lò phản ứng nhiệt hạch mới đầu tiên được chế tạo ở Nga trong vòng 20 năm qua.
4. Trung tâm Nghiên cứu Viện Kurchatov cho biết: “Đối với đất nước chúng tôi, đây là chiếc Tokamak hình chữ D cỡ vừa đầu tiên. Ở Petersburg có một lò Globus-M2, nhưng nó nhỏ hơn 3-4 lần so với T-15MD về kích thước tuyến tính và có thể đặt vừa trong một căn phòng khá rộng rãi trong một căn hộ bình thường. Lò Tokamak T-15DM cần một căn phòng có kích thước như một xưởng máy. Và quy mô trong trường hợp này là rất quan trọng, để có được các thông số plasma cao”.
5. Tokamak mới có kích thước nhỏ nhưng nhiệm vụ của nó ở quy mô vũ trụ: Nó phải khởi động được các phản ứng nhiệt hạch như những phản ứng vẫn thường xảy ra ở trong tâm của các ngôi sao. Điều này có được nhờ nhiệt độ ở Tokamak có thể lên tới 100 triệu độ C, gấp 8 lần so với nhiệt độ ở trung tâm Mặt trời. Tokamak T-15MD sẽ được sử dụng để giải quyết các vấn đề nghiên cứu. Nắm vững công nghệ phản ứng tổng hợp nhiệt hạch có kiểm soát sẽ giúp thu được nguồn năng lượng hầu như không cạn kiệt và thân thiện với môi trường. Một lò phản ứng như vậy, do khả năng chạy bằng nhiên liệu an toàn và giá cả phải chăng như đợteri và triti nên có thể giúp thay thế các nhà máy điện hạt nhân. Phản ứng tổng hợp nhiệt hạch có thể cung cấp năng lượng sạch cho nhân loại trong nhiều năm tới, vì thế việc đưa vào hoạt động một lò phản ứng như vậy là một bước tiến lớn trên con đường này.
Theo dự kiến, sẽ nghiên cứu một loạt các đặc tính của plasma trên Tokamak T-15MD. Trong số đó có các quá trình khuếch tán hỗn loạn và vận chuyển các thông số quan trọng để giữ plasma ở trạng thái được kiểm soát. Để đạt mục đích này, người ta cũng lên kế hoạch nghiên cứu vai trò của điện trường và chuyển động quay trong quá trình duy trì plasma và chuyển đổi plasma sang các chế độ khác nhau. Điều đặc biệt quan trọng đối với các nhà khoa học là nghiên cứu sự chuyển đổi của plasma sang chế độ L”. Chế độ L được đặc trưng bởi sự phụ thuộc tiêu cực của thời gian tồn tại của plasma vào công suất gia nhiệt, cũng như Sir suy giảm của sự giam giữ nlasma (giảm thời gian tồn tại) và những thay đổi bên trong của dòng chảy hỗn loạn trong plasma. Nói một cách dễ hiểu, khi chuyển sang chế độ L, chiếc bánh rán plasma bên trong Tokamak có nguy cơ bị phá hủy khi được gia nhiệt và quá trình khởi động sẽ phải bắt đầu lại từ đầu.
6. Nghiên cứu plasma rất quan trọng đối với các nhà khoa học. Trước hết, các nhà khoa học phải tìm ra bản chất của năng lượng, từ đó tìm ra bản chất di chuyển của các dòng nhiệt và hạt từ plasma đến thành buồng chân không. Trong tương lai, điều này có thể giúp xây dựng nhiều dự án nhiệt hạch quy mô lớn hơn và cho phép nhân loại giải quyết vấn đề về nhu cầu điện đang tăng lên hàng năm.
7. Các câu hỏi quan trọng tiếp theo là: Vai trò của các thông số khác nhau trong quá trình giam giữ plasma là gì? Sự hỗn loạn, điện trường, hoặc hồ sơ nhiệt độ plasma sẽ ảnh hưởng như thế nào đến sự giam giữ plasma và dòng chảy của các hạt? Các nhà khoa học đã biết rất nhiều về điều này, nhưng họ vẫn còn nhiều điều cần tìm hiểu.
(Nguồn: Trích từ bài báo “Nhiệt hạch – Nguồn năng lượng của tương lai” do TS. Nguyễn Thành Sơn biên dịch, tạp chí Năng lượng Việt Nam, xuất bản năm 2022)
Từ "hồ sơ" ở đoạn 8 có nghĩa là gì?
Theo đoạn 8, từ “hồ sơ” ý chỉ thông số.