Đọc hiểu chủ đề công nghệ - Đề số 7
Kỳ thi ĐGTD ĐH Bách Khoa
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Ý nào sau đây KHÔNG phải là một trong các ưu điểm của công nghệ xử lí bùn thải mới do nhóm PGS.TS Đỗ Văn Mạnh nghiên cứu?
Rút ngắn thời gian xây dựng bể xử lý bùn thải KHÔNG phải là một trong các ưu điểm của công nghệ xử lí bùn thải mới do nhóm PGS.TS Đỗ Văn Mạnh nghiên cứu.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Vai trò chính của bể tiền xử lí là gì?
Vai trò chính của bể tiền xử lí là thay đổi tính chất hóa học của chất thải.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
“đường dẫn, bình chứa nhiên liệu cũng như bếp đốt” được nhắc tới ở đoạn 5 là các bộ phận của thiết bị nào sau đây?
“đường dẫn, bình chứa nhiên liệu cũng như bếp đốt” được nhắc tới ở đoạn 5 là các bộ phận của máy phát điện.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Dung dịch KOH đóng vai trò gì trong quy trình đưa khí Biogas đi qua máy ly tâm HGRPB?
Dung dịch KOH đóng vai trò dung môi trong quy trình đưa khí Biogas đi qua máy ly tâm HGRPB
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Cụm từ “khí biogas sạch” ở đoạn 7 có thành phần chính là chất nào sau đây?
Cụm từ “khí biogas sạch” ở đoạn 7 có thành phần chính là chất CH4.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Ý nào sau đây KHÔNG phải là một ưu điểm của phân bón sinh học sinh ra từ quá trình xử lí bùn thải?
Rút ngắn thời gian thu hoạch KHÔNG phải là một ưu điểm của phân bón sinh học sinh ra từ quá trình xử lí bùn thải.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Ý chính của đoạn 10 là gì?
Ý chính: Thực trạng công nghệ xử lí bùn thải hữu cơ ở Việt Nam.
Thí sinh đọc Bài đọc và trả lời các câu hỏi 1 – 9.
1. Mới đây nhóm nghiên cứu của PGS.TS. Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20 kW, tại thành phố Buôn Mê Thuột, Đắk Lắk.
2. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững.
3. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu.
4. TS Mạnh cho biết, bùn thải được đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhấtcho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảmđộ pH bằng axit hoặc dùng bazơ để tăng pH.
5. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khíbiogas. Tuy nhiên, khí biogas sau khi được tạo ra vẫn còn nhiều tạp chất (CO2, Họs,20 SO), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn, bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao.
6. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện.
7. "Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước", TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện.
8. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15mở bùn mỗi ngày được xử lý để phát điện với công suất 20 kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau.
9. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất.
10. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường.
11. "Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững", TS Mạnh nói.
12. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhómnghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn.
(Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VnExpress, ngày 21/11/2020)
Nhược điểm của công nghệ xử lí bùn thải do nhóm PGS.TS. Đỗ Văn Mạnh nghiên cứu xây dựng là gì?
Nhược điểm của công nghệ xử lí bùn thải do nhóm PGS.TS. Đỗ Văn Mạnh nghiên cứu xây dựng là quy mô xử lí nhỏ.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Ý chính của bài đọc là gì?
Nội dung chính: Đặc điểm và tính chất của vật liệu nano.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Trong đoạn 1, tác giả lấy ví dụ về việc uống nước để chứng minh điều gì?
Trong đoạn 1, tác giả lấy ví dụ về việc uống nước để chứng minh một chất tưởng như vô hại sẽ có hại nếu dùng sai liều lượng.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Theo bài đọc, điều gì KHÔNG dẫn đến sự thay đổi tính chất của vật liệu nano?
Đường dùng KHÔNG dẫn đến sự thay đổi tính chất của vật liệu nano.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Cụm từ “thực bào chán nản" ở đoạn 3 có ý nghĩa gì?
Cụm từ “thực bào chán nản" ở đoạn 3 có ý nghĩa: Đại thực bào không hấp thụ được sợi carbon.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Theo đoạn 4, điều gì có thể rút ra về đặc tính của các loại vật liệu nano?
Rút ra kết luận: Các loại vật liệu nano đồng chất nhưng vẫn có thể có đặc điểm và tính chất khác nhau.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Khi tăng kích cỡ tiểu phân nano thì độc tính của nó như thế nào?
Khi tăng kích cỡ tiểu phân nano thì độc tính của nó giảm.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Điều gì sau đây đúng về khả năng của các loại nano bạc trong diệt khuẩn và virus?
Không có minh chứng về khả năng tiêu diệt vi khuẩn và virus trên tế bào.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Loại nano bạc nào dưới đây gây hại đến phổi của động vật?
Nano bạc 20 nm gây hại đến phổi của động vật.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Tại sao không nên sử dụng nano bạc đường uống?
Không nên sử dụng nano bạc đường uống vì chưa có đủ cơ sở để kết luận về ảnh hưởng của nano bạc theo đường uống.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
1. Trong lúc mọi người đang hân hoan về ứng dụng của vật liệu nano thì các nhà khoa học lại đặt ra câu hỏi rằng liệu vật liệu nano có an toàn không, nhất là khi nó hiện diện ở khắp mọi nơi. Một nguyên tắc bất di bất dịch của độc chất học là tất cả mọi thứ đều độc hoặc không độc, chính nồng độ và đường dùng của nó quyết định điều đó. Ví dụ, nước là một chất tưởng chừng cần thiết và vô hại, nếu ta uống 1,5-2 lít mỗi ngày là tốt cho sức khỏe nhưng nếu một người uống 10 lít nước thì sẽ bị ngộ độc chết.
2. Bản chất vật liệu nano rất khác với vật liệu cùng loại kích cỡ lớn vì vật liệu nano có kích thước nhỏ, tỷ lệ của nhân so với bề mặt lớn hơn nhiều so với vật liệu cùng loại không nano; bên cạnh đó, khả năng vận chuyển và tạo hình của vật liệu nano cũng thay đổi, dẫn đến biến đổi tính chất vật lý, hoá học, quang học và sinh học.
3. Vì thế, một số nhà khoa học đã bắt đầu xem xét về tính an toàn của chúng. Nghiên cứu của Poland và cộng sự (2008) trên Nature Nanotechnology là hồi chuông lớn nhất về độc tính của nano. Nghiên cứu này cho thấy sợi nano carbon đường kính 50 nanomet (nm), dài 100 micromet tạo ra khối u ở mô cơ hoành tương tự sợi Amiăng, tuy nhiên sợi carbon rối đường kính 15 nm thì không. Nguyên nhân là sợi carbon dài làm cho đại thực bào không tiêu được trong quá trình gọi là “thực bào chán nản”. Nhiều nghiên cứu sau đó cũng củng cố cho luận điểm một số sợi nano gây ra ung thư ở chuột giống với Amiăng.
4. Sau đấy, các nước phát triển hiểu rằng họ không thể không quan tâm đến độc tính của các vật liệu nano và liên tục tài trợ cho các nghiên cứu về độc tính nano. Một số ví dụ điển hình về độc tính của vật liệu nano đã được công bố như: carbon dạng kim cương và dạng fullerenes gần như trơ, nhưng carbon đen hay ống nano carbon gây độc, phụ thuộc nồng độ, chiều dài hay dạng kết tụ. Thử nghiệm trên mô hình cá cho thấy tiểu phân nano bạc 10 nm hoặc 35 nm gây độc chết, nhưng độc tính giảm khi bọc citrate hoặc fulvic acid, silicat (SiO2) 15 nm gây hành vi giống bệnh Parkinson, còn silicat 50 năm thì độc tính giảm (cũng trên mô hình cá). Các kết quả nghiên cứu về nano cũng cho thấy mỗi loại vật liệu nano (tuy cùng chất, ví dụ cùng là nano bạc), nhưng tuỳ vào đặc điểm (kích thước, hình dạng, cấu trúc, chất bao phủ và cách chế tạo) là một “cá thể” riêng biệt với tính chất khác nhau. Không thể từ một cá thể này mà suy ra tính chất của cá thể khác.
5. Quay lại chủ đề về nano bạc, một số nghiên cứu ủng hộ cho tác dụng của các loại nano bạc trong diệt khuẩn và virus: nano bạc 5 nm, 25 nm và 30 nm có khả năng tiêu diệt tế bào bị nhiễm herpesvirus và Epstein-Barr Virus; nano bạc 3,5 nm, 6,5 nm và 12,9 nm trộn lẫn với chitosan có khả năng diệt E. coli và cúm H1N1. Tất cả các nghiên cứu này đều chỉ là thử nghiệm trên tế bào, rất ít thử nghiệm trên động vật, còn thử nghiệm lâm sàng trên người thì hoàn toàn chưa có. Lưu ý là chưa có bất cứ nghiên cứu nào dùng nano bạc trị nCoV, SARS hay MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào MERS. Còn về độc tính của nano bạc, chỉ cần tra cứu trong Pubmed (cơ sở dữ liệu các nghiên cứu của Hoa Kỳ) thì ra hơn 2.855 kết quả, có cả độc tính trên vết thương hở, hô hấp và tiêu hóa. Một số kết quả cụ thể như khi cho chuột cống trong thí nghiệm hít nano bạc 18 nm thì bị viêm phổi sau 90 ngày. Nghiên cứu của Kwon và cộng sự (2012) trên chuột nhắt cũng chứng minh rằng hít phải nano bạc 20 nm và 30 nm gây độc phổi cấp và dẫn tới việc nano bạc thâm nhập vào các cơ quan khác nhau; nano bạc 20 nm có khả năng gây độc gene trên dòng tế bào gan HepG2.
6. Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ không khuyến cáo dùng nano bạc đường uống, vì họ cũng không thể biết hết tác dụng của nano bạc trong cơ thể, dù là kích cỡ nào. Do đó, các sản phẩm có nano bạc mà nhiều người đang sử dụng trong phòng chống COVID-19 cần phải chứng minh rõ ràng các đặc điểm nano bạc như: kích thước, hình dạng, cách chế tạo, độ phân tán, lớp vỏ bao, thử nghiệm để chứng minh hiệu quả phòng chống COVID-19, mô hình thử nghiệm, thử nghiệm tính độc hại và an toàn của sản phẩm theo đường dùng, thử nghiệm lâm sàng.
7. Trong y khoa, việc nghiên cứu phát triển các vật liệu nano để chế tạo các sản phẩm hỗ trợ chẩn đoán, điều trị bệnh và tăng cường giải phóng thuốc tới tế bào đích đang được các nhà khoa học đặc biệt quan tâm. Mặc dù các sản phẩm nano từ hữu cơ đã được nhiều quốc gia chấp thuận sử dụng nhưng các tiểu phân nano vô cơ đa phần vẫn đang trong giai đoạn thử nghiệm trên động vật. Triển vọng của tiểu phân nano vào trị bệnh là rất lớn, tuy nhiên điều quan trọng cần quan tâm chính là độc tính của chúng. Liệu việc sử dụng chúng có an toàn trên người hay không luôn là câu hỏi được đặt ra và cần giải quyết thông qua các thử nghiệm từ động vật tới thử nghiệm lâm sàng.
(Nguồn: Trích từ bài báo của TS. Phạm Đức Hùng, xuất bản trên tạp chí Khoa học và Đời sống, số 3 năm 2020)
Trong đoạn cuối, tác giả thể hiện thái độ gì?
Trong đoạn cuối, tác giả thể hiện thái độ thận trọng trong việc sử dụng nano bạc.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Ý chính của bài viết trên là gì?
Nội dung chính: Khả năng ứng dụng của vật liệu sinh học mới trong một số lĩnh vực.
Thí sinh đọc Bài đọc và trả lời các câu hỏi:
Mực sinh học
“Mực sinh học” là tên gọi mà các nhà khoa học đặt cho một loại gel 3-D mới có chứa vi khuẩn tạo ra các phân tử có ích trong việc chữa lành vết thương và làm sạch môi trường nước. Vật liệu có thể được tùy chỉnh cho các mục đích sử dụng khác nhau và được phun ra từ vòi phun của máy in 3-D thành nhiều hình dạng hữu dụng.
Mặc dù vi khuẩn có thể gây nhiễm trùng nhưng chúng cũng là “những chú ngựa tháo vát”. Nhiều loại vi khuẩn khác nhau có khả năng phân hủy các chất ô nhiễm, tổng hợp các hợp chất hữu ích, thực hiện quang hợp cũng như các quá trình trao đổi chất khác. Tiến sĩ Patrick Rühs, nhà nghiên cứu về các vật liệu phức hợp tại Viện Công nghệ Liên bang Thụy Sĩ Zurich, cho rằng in 3-D sử dụng mực sinh học là một cơ hội tốt để biến những vi khuẩn này thành vật liệu chức năng.
Tiến sĩ Rühs và các đồng nghiệp bắt đầu bằng cách thiết kế một hydrogel, một mạng lưới các polymer có khả năng hấp thụ một lượng lớn nước. Gelatin là một hydrogel như vậy. Cấu trúc dạng nước cho phép gel chảy qua vòi phun của máy in 3-D và đông đặc lại ngay sau đó. Hydrogel của nhóm nghiên cứu có hai thành phần polymer chứa đường - acid hyaluronic và chiết xuất rong biển carrageenan - để tạo cấu trúc và nuôi dưỡng vi khuẩn. Gel cũng chứa silica nhiệt hóa, làm cho vật liệu trở nên dính và đàn hồi hơn. Sau khi vi khuẩn được thêm vào gel, hợp chất này được phun ra ngoài và tạo thành một mạng lưới co giãn có khả năng giữ nguyên hình dạng được in ra.
Một ứng dụng đầy hứa hẹn của vật liệu mới là có thể tùy chỉnh để điều trị các vết thương và bỏng. Nhờ các chất dinh dưỡng trong gel, cùng với oxy, vi khuẩn Acetobacter xylium tạo ra cellulose, một phân tử giúp tăng tốc độ chữa lành khi phủ lên bề mặt vết thương. Nó tạo thành một giá đỡ tốt cho kỹ thuật ghép da hoặc mô. Bộ phận cơ thể cấy ghép khi được phủ cellulose có thể giảm nguy cơ bị đào thải. Dù sử dụng với mục đích nào thì lớp phủ này càng vừa khít với các bộ phận cơ thể càng tốt. Tiến sĩ Rühs cho biết, hydrogel chứa vi khuẩn có thể được sử dụng để chế tạo băng quấn cellulose với hình dạng chính xác của bộ phận cấy ghép dựa trên kết quả chụp cắt lớp.
Để kiểm tra ý tưởng này, các nhà nghiên cứu đã chế tạo hydrogel với vi khuẩn Acetobacter xylinum. Khi áp dụng máy in 3-D để xử lý các bề mặt cong, họ phủ một lớp hydrogel mỏng lên trên khuôn mặt của một con búp bê. Sau bốn ngày trong môi trường ấm và ẩm ướt, vi khuẩn đã biến đổi bề mặt hydrogel thành bề mặt cellulose. Cellulose chỉ được tạo ra trên bề mặt của hydrogel vì đó là nơi chứa hầu hết oxy; do đó, phương pháp này tạo ra các lớp phủ mỏng thích hợp để điều trị vết thương. Anne Meyer, giáo sư về nano sinh học tại Đại học Công nghệ Delft, người không tham gia nghiên cứu trên cho biết: “Kết quả này là ví dụ đầu tiên về các vật liệu khuôn được tạo ra thông qua quá trình in 3-D của vi khuẩn.” Nhóm nghiên cứu của giáo sư cũng đã phát triển một loại hydrogel vi khuẩn trước đó được làm từ polymer alginate từ tảo, nhưng không tạo được thành các vật liệu chức năng.
Các vật liệu tương tự có thể giúp làm sạch môi trường. Nhóm nghiên cứu thuộc Viện Công nghệ Liên bang Thụy Sĩ Zurich đã tạo ra một lưới hydrogel kết hợp với vi khuẩn Pseudomonas putida để phân hủy chất gây ô nhiễm phenol. Lưới đã làm sạch dung dịch chứa phenol trong khoảng sáu ngày. Theo giáo sư Meyer, đây là một thiết kế tiện dụng để xử lý sinh học, bởi vi khuẩn trong lưới có thể được tái sử dụng hoặc chuyển đến một vị trí mới. Tuy nhiên, khả năng tái sử dụng vẫn có thể có vấn đề. Khi các nhà nghiên cứu rửa sạch lưới và lắp lại thí nghiệm trong dung dịch phenol mới, thời gian làm sạch giảm xuống còn một ngày, khả năng cao là do một số vi khuẩn đi vào dung dịch phenol trong khi phần nhiều vi khuẩn tiếp tục phát triển trong lưới. Điều này có thể giúp quá trình làm sạch lưới hiệu suất hơn, tuy nhiên, điều không mong đợi trên thực tế là vi khuẩn có thể bị giải phóng ra môi trường. Đây là nhận định của Jason Shear, một nhà hóa học tại Đại học Texas ở Austin, người không tham gia nghiên cứu này.
Tiến sĩ Rühs cho biết, nhóm nghiên cứu vẫn đang tinh chỉnh vật liệu để thử nghiệm trong thực tế. Vì mực sinh học có thể được tạo ra từ bất kỳ tổ hợp vi khuẩn nào nên các nhà nghiên cứu cũng đang suy nghĩ về các ứng dụng khác, ví dụ như giải quyết sự cố tràn dầu, bằng cách thiết kế hydrogel với một polymer ưa béo có khả năng hấp thụ dầu thay vì nước. Dầu sau khi được hấp thụ bởi hydrogel sẽ bị vi khuẩn trong đó phân hủy.
(Nguồn: Dịch từ bài báo “Mực sinh học phủ bởi vi khuẩn để tạo ra các phân tử theo nhu cầu” của tác giả Deirdre Lockwood, xuất bản năm 2017, tạp chí Scientific American).
Cụm từ “những chú ngựa thảo vặt" ở đoạn 2 có nghĩa là gì?
Cụm từ “những chú ngựa thảo vặt" ở đoạn 2 có nghĩa chỉ vi khuẩn có thể thực hiện được nhiều chức năng.