2 câu trả lời
$y=\tan x+\cot x$ ĐK: $\left\{ \begin{array}{l} \cos x\ne0\\ \sin x\ne 0 \end{array} \right .\Leftrightarrow \sin 2x\ne0$ $\Leftrightarrow 2x\ne k\pi$ $\Leftrightarrow x\ne k\dfrac{\pi}{2}(k\in\mathbb Z)$ Txđ: $D=\mathbb R\backslash\{k\dfrac{\pi}{2}(k\in\mathbb Z)\}$ $x\in D$ $\exists -x\in D$ Xét $y(-x)=\tan(-x)+\cot(-x)$ $=-\tan x-\cot x$ $=-(\tan x+\cot x)$ $=-y(x)$ Vậy hàm đã cho là hàm lẻ.