So sánh √2021 -√2020 và √2022 -√2021

1 câu trả lời

Đặt: `\sqrt{2021} - \sqrt{2020} = a`

`\sqrt{2022} - \sqrt{2021} = b` 

`⇒ a - b = \sqrt{2021} - \sqrt{2020} - (\sqrt{2022} - \sqrt{2021})`

           `= \sqrt{2021} - \sqrt{2020} - \sqrt{2022} + \sqrt{2021})`

           `= 2\sqrt{2021} - (\sqrt{2020} + \sqrt{2022})`

$\\$

Ta lại có:

$\bullet$ `(\sqrt{2020} + \sqrt{2022})^2`

`= 2020 + 2022 + 2\sqrt{2020.2022}`

`= 4042 + 2\sqrt{(2021 - 1).(2021 + 1)}`  

`= 4042 + 2\sqrt{2021^2 - 1}`

$\bullet$ `(2\sqrt{2021})^2 = 4.2021 = 4042 + 2.2021 = 4042 + 2\sqrt{2021^2}`

Vì: `2\sqrt{2021^2 - 1} < 2\sqrt{2021^2}`

`⇒ 4042 + 2\sqrt{2021^2 - 1} < 4042 + 2\sqrt{2021^2}`

Hay: `(\sqrt{2020} + \sqrt{2022})^2 < (2\sqrt{2021})^2`

`⇒ \sqrt{2020} + \sqrt{2022} < 2\sqrt{2021}`

`⇔ 2\sqrt{2021} - (\sqrt{2020} + \sqrt{2022}) > 0`

`⇒ a - b > 0`

`⇔ a > b`

Vậy: `\sqrt{2021} - \sqrt{2020} > \sqrt{2022} - \sqrt{2021}`                                    

 

Câu hỏi trong lớp Xem thêm