2 câu trả lời
Áp dụng công thức hạ bậc và sin tổng ta có
$\dfrac{1-\cos(8x)}{2} - \dfrac{1+\cos(12x)}{2} = \cos(10x)$
$<-> 1 -\cos(8x) - 1 - \cos(12x) = 2\cos(10x)$
$<-> \cos(12x) + \cos(8x) = -2\cos(10x)$
$<-> 2\cos(10x) \cos(2x) = -2\cos(10x)$
$<-> \cos(10x)(\cos(2x) + 1) = 0$
Vậy $\cos(10x) = 0$ hoặc $\cos(2x) = -1$ hay $x = \dfrac{\pi}{20} + \dfrac{k\pi}{10}$ hoặc $x = \dfrac{(2k+1)\pi}{2}$
Câu hỏi trong lớp
Xem thêm