`S=1+3+3^2+3^3+...+3^41` Chứng tỏ `S` chia hết cho `4;13;26`

2 câu trả lời

Đáp án:

 26

Giải thích các bước giải:

 Vì 26 có thể chia hết cho 4;13;26

`S=1+3+3^2+3^3+...+3^{41}`

`=(1+3)+(3^2+3^3)+...+(3^{40}+3^{41})`

`=(1+3)+3^2.(1+3)+...+3^{40}.(1+3)`

`=(1+3).(1+3^2+3^4+...+3^{40})`

`=4.(1+3^2+3^4+...+3^{40})`

Mà `4\vdots 4`

`=>4.(1+3^2+3^4+...+3^{40})\vdots 4`

`=>S\vdots 4(1)`

$\\$

_________________________________________________________________

$\\$

`S=1+3+3^2+3^3+...+3^{41}`

`=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^{39}+3^{40}+3^{41})`

`=(1+3+3^2)+3^3.(1+3+3^2)+...+3^39.(1+3+3^2)`

`=(1+3+3^2).(1+3^3+3^6+...+3^39)`

`=(1+3+9).(1+3^3+3^6+...+3^39)`

`=13.(1+3^3+3^6+...+3^39)`

`=>13\vdots 13`

`=>13.(1+3^3+3^6+...+3^39)`

`=>S\vdots 13(2)`

$\\$

_________________________________________________________________

$\\$

`S=1+3+3^2+3^3+...+3^41`

`=(1+3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^10+3^11)+...+(3^36+3^37+3^38+3^39+3^40+3^41)`

`=(1+3+3^2+3^3+3^4+3^5)+3^6.(1+3+3^2+3^3+3^4+3^5)+...+3^36.(1+3+3^2+3^3+3^4+3^5)`

`=(1+3+3^2+3^3+3^4+3^5).(1+3^6+3^12+...+3^36)`

`=(1+3+9+27+81+243).(1+3^6+3^12+...+3^36)`

`=364.(1+3^6+3^12+...+3^36)`

Mà `364\vdots 26`

`=>364.(1+3^6+3^12+...+3^36)`

`=>S\vdots 26(3)`

$\\$

_________________________________________________________________

$\\$

Từ `(1); (2)` và `(3)`, ta suy ra: `S` chia hết cho `4; 13; 26`