2 câu trả lời
S=1+3+3^2+3^3+...+3^{41}
=(1+3)+(3^2+3^3)+...+(3^{40}+3^{41})
=(1+3)+3^2.(1+3)+...+3^{40}.(1+3)
=(1+3).(1+3^2+3^4+...+3^{40})
=4.(1+3^2+3^4+...+3^{40})
Mà 4\vdots 4
=>4.(1+3^2+3^4+...+3^{40})\vdots 4
=>S\vdots 4(1)
\\
_________________________________________________________________
\\
S=1+3+3^2+3^3+...+3^{41}
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^{39}+3^{40}+3^{41})
=(1+3+3^2)+3^3.(1+3+3^2)+...+3^39.(1+3+3^2)
=(1+3+3^2).(1+3^3+3^6+...+3^39)
=(1+3+9).(1+3^3+3^6+...+3^39)
=13.(1+3^3+3^6+...+3^39)
=>13\vdots 13
=>13.(1+3^3+3^6+...+3^39)
=>S\vdots 13(2)
\\
_________________________________________________________________
\\
S=1+3+3^2+3^3+...+3^41
=(1+3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^10+3^11)+...+(3^36+3^37+3^38+3^39+3^40+3^41)
=(1+3+3^2+3^3+3^4+3^5)+3^6.(1+3+3^2+3^3+3^4+3^5)+...+3^36.(1+3+3^2+3^3+3^4+3^5)
=(1+3+3^2+3^3+3^4+3^5).(1+3^6+3^12+...+3^36)
=(1+3+9+27+81+243).(1+3^6+3^12+...+3^36)
=364.(1+3^6+3^12+...+3^36)
Mà 364\vdots 26
=>364.(1+3^6+3^12+...+3^36)
=>S\vdots 26(3)
\\
_________________________________________________________________
\\
Từ (1); (2) và (3), ta suy ra: S chia hết cho 4; 13; 26