Dùng một ca múc nước ở thùng chứa nước A có nhiệt độ tA = 20 0C và ở thùng chứa nước B có nhiệt độ tB = 80 0C rồi đổ vào thùng chứa nước C. Biết rằng trước khi đổ, trong thùng chứa nước C đã có sẵn một lượng nước ở nhiệt độ tC = 40 0C và bằng tổng số ca nước vừa đổ thêm vào nó. Tính số ca nước phải múc ở mỗi thùng A và B để có nhiệt độ nước ở thùng C là 50 0C. Bỏ qua sự trao đổi nhiệt với môi trường, với bình chứa và ca múc nước.

1 câu trả lời

Đáp án:

$1/2n$ ca.

Giải thích các bước giải::

Gọi : $c$ là nhiệt dung riêng của nước ; $m$ là khối lượng nước chứa trong một ca ;

           $n_2$ và $n_2$ lần lượt là số ca nước múc ở thùng $A$ và thùng $B$ ;

           $(n_1 + n_2)$ là số ca nước có sẵn trong thùng $C.$

- Nhiệt lượng do $n_1$ ca nước ở thùng $A$ khi đổ vào thùng $C$ đã hấp thụ là :

                                   $Q_1= n_1.m.c(50 – 20) = 30c.m.n_1$

- Nhiệt lượng do $n_2$ ca nước ở thùng $B$ khi đổ vào thùng $C$ đã toả ra là :

                                             $Q_2 = n_2.m.c(80 – 50) = 30c.m.n_2$

- Nhiệt lượng do $(n_1 + n_2)$  ca nước ở thùng $C$ đã hấp thụ là :

                                    $Q­_3 = (n_1 + n_2)m.c(50 – 40) = 10c.m.(n_1 + n_2)$

- Phương trình cân bằn nhiệt : $Q­_1 + Q­_3 = Q­_2$  

                         $ 30c.m.n_1 + 10c.m.(n_1 + n_2) = 30c.m.n_2 \to  2n_1= n_2$

- Vậy, khi múc $n$ ca nước ở thùng $A$ thì phải múc $2n$ ca nước ở thùng $B$ và số nước đã có sẵn trong thùng $C$ trước khi đổ thêm là $1/2n$ ca.

Câu hỏi trong lớp Xem thêm