1 câu trả lời
Đáp án:
{x=kπx≈12arccos0,57+kπ(k∈Z)
Lời giải:
cos2x−cos8x+cos4x=1⇔cos2x−(2cos24x−1)+(2cos22x−1)=1⇔cos2x−[2(2cos22x−1)2−1]+2cos22x−1−1=0⇔cos2x−[2(4cos42x−4cos22x+1)−1]+2cos22x−2=0⇔cos2x−8cos42x+8cos22x−1+2cos22x−2=0⇔−8cos42x+10cos22x+cos2x−3=0⇔−8cos42x+8cos22x+2cos22x+cos2x−3=0⇔−8cos22x(cos22x−1)+(cos2x−1)(2cos2x+3)=0⇔−8cos22x(cos2x−1)(cos2x+1)+(cos2x−1)(2cos2x+3)=0⇔(cos2x−1)[−8cos32x−8cos22x+2cos2x+3]=0⇔[cos2x=1−8cos32x−8cos22x+2cos2x+3=0⇔[2x=k2πcos2x≈0,57⇔[x=kπx≈12arccos0,57+kπ(k∈Z)
Câu hỏi trong lớp
Xem thêm